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Topic of the Talk

• Stronger form of (Craig) Interpolation: Uniform Interpolation.

• We focus on Quantifier-free Uniform Interpolants (UIs).

• UIs are a ‘weak form’ of Quantifier Elimination (QE):

I The UI of a quantified formula ∃e φ(e, x) is the strongest formula
implied by ∃e φ(e, x);

I UIs are strictly related to proper QE in model completions.

• Applications to verification of infinite-state systems, where UIs are
used to compute sets of reachable states in a precise way.
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Ordinary Interpolation
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Ordinary Interpolation

William Craig
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Ordinary vs Uniform Interpolation
Let L be a fragment (propositional, FO quantifier-free, etc.) of the
language of a theory T .

Definition (Ordinary Interpolation)
Given a pair of L-formulae (φ(x, y), ψ(x, z)) s.t. φ(x, y) `T ψ(x, z), an
ordinary interpolant of (φ, ψ) is an L-formula φ′(x) where only the x
occur, satisfying:
• φ(x, y) `T φ′(x);
• φ′(x) `T ψ(x, z).

• Every pair of L-formulae (φ, ψ) has an ordinary interpolant =⇒ T
admits (L)-ordinary (Craig) interpolation [Cra57].
• Reverse ordinary interpolant for a pair (φ, ψ): ordinary interpolant

for the pair (φ(x, y),¬ψ(x, z)) [McM03, McM06].

I In this case, φ ∧ ψ is T -inconsistent and a reverse interpolant φ′(x) is
s.t. φ `T φ′ and φ′ ∧ ψ is T -inconsistent.
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Ordinary vs Uniform Interpolation
Let L be a fragment (propositional, FO quantifier-free, etc.) of the
language of a theory T .

Definition (Uniform Interpolation)
Given an L-formula φ, a uniform interpolant (UI) of φ (w.r.t. y) is an
L-formula φ′(x) where only the x occur, and satisfying:
• φ(x, y) `T φ′(x);
• for any further L-formula ψ(x, z) s.t. φ(x, y) `T ψ(x, z), we have
φ′(x) `T ψ(x, z).

• Every L-formula φ(x, y) has UI =⇒ T admits (L)-uniform
interpolation.
• UIs are ordinary interpolants as well, but only depend on φ and are

independent of ψ.
• If they exist, UIs are unique, up to T -equivalence.
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Symbolic Transition System

• Set of states S: formula φ(x), called state formula, where x is a
tuple of variables, called state variables (e.g., registers of a RAM
machine).

• The content of x determines the global state of the system.
• Usually, state formulae are quantifier-free, where the x occur free.
• Initial states Init: state formula I(x).
• Transitions T : formula τ(x, x′), connecting the current state x to

the next state x′.
• Symbolic Transition System TS: 〈(Σ, T ), I(x), τ(x, x′)〉, with

(Σ, T ) a FO theory (runs of the system live in their models)
• If the x range over an infinite domain, TS formalizes an

infinite-state system.
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Symbolic Model Checking

Safety Problem: is a set of undesired states U(x) (state formula)
reachable through the transitions τ(x, x′) from a set of initial states I(x)?

Safety Verification

x
x′� x′�′ � U

I

τ
τ

Given an unsafe configuration � , there exist a 
read-only DB and a run of the system from the 

initial states (i.e., � ) to the unsafe configuration 
� ? If yes, the system is UNSAFE. 

Otherwise, it is SAFE.

U(x, a)
ι(x, a)

U(x, a)
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Forward Reachability(Un)safety via Forward 
Reachability

unsafe
configurations

U(x)
initial

configurations

I(x)
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Direct Image Computation
The key ingredient is to compute iteratively Direct Images of a state
formula φ through transitions τ

Dir(τ, φ) :≡ ∃x(φ(x) ∧ τ(x, x′))

U(x)I(x)

(Direct) Image Computation
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Preimage Computation
The key ingredient is to iteratively compute Direct Images of a state
formula φ through transitions τ

Pre(τ, φ) :≡ ∃x′(τ(x, x′) ∧ φ(x′))

U(x)I(x)

Preimage Computation
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The Problem of Quantifiers (I)
• State formulae: quantifier-free

I Example:

φ(xapplicant) :≡ User(xapplicant, John) ∧ xapplicant 6= undef

• Transition formulae may be (existentially) quantified formulae: e.g.,
a transition whose guard queries the content of a relational database.

I Example:

τ(xapplicant, x
′
applicant) :≡ ∃uid, name (xapplicant = undef

∧ User(uid, name) ∧ x′applicant = uid)

• Transitions may introduce new variables wrt state variables x

I Example: uid and name new w.r.t. the state variable xapplicant =⇒
data values non-deterministacally taken from a DB.
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∧ User(uid, name) ∧ x′applicant = uid)

• Transitions may introduce new variables wrt state variables x

I Example: uid and name new w.r.t. the state variable xapplicant =⇒
data values non-deterministacally taken from a DB.
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The Problem of Quantifiers (II)

• Forward and Backward Reachability compute sets of (reachable)
states by computing (direct or pre-)images through transitions:

I Images introduce quantifiers, because of quantifiers in τ ;
I Images are sets of states, so they should be state formula =⇒

Images should be quantifier-free!

• The problem of quantifiers affects the effectiveness of the search:

I Loop invariant of the procedure: ‘a set of states is described by a
state formula’

I During the search, the tail of quantifiers can grow dramatically,
affecting also termination and the performance!

• How to solve the problem of quantifiers?

I Ordinary Interpolation [McM06]: over-approximation of reachable
states!

I Quantifier Elimination: computationally expensive, not available for
generic first-order theories
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(Reverse) Ordinary Interpolation
(Direct) Image Computation

U(x)I(x)

∃x, x′�(I(x) ∧ τ(x, x′ �) ∧ τ(x′�, x′ �′�))
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(Reverse) Ordinary Interpolation
Interpolation

∃x, x′�(I(x) ∧ τ(x, x′ �) ∧ τ(x′�, x′ �′�))

U(x)

x x′� x′�′ �

I(x)
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(Reverse) Ordinary Interpolation
Interpolation

∃x, x′�(I(x) ∧ τ(x, x′�) ∧ τ(x′ �, x′�′ �) ∧ U(x′�′�)) ⊧ ⊥

U(x)⋂ = ∅I(x)

x x′� x′�′ �
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(Reverse) Ordinary Interpolation
(Reverse) Interpolants

A := I(x) ∧ τ(x, x′ �)

x x′� x′�′ �

U(x)

A ∧ B := I(x) ∧ τ(x, x′ �) ∧ τ(x′ �, x′�′ �) ∧ U(x′�′ �) ⊧ ⊥
B := τ(x′ �, x′�′ �) ∧ U(x′�′ �)

I(x)
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(Reverse) Ordinary Interpolation
By definition of (reverse) ordinary interpolant, there is a formula
Int(x′) (where only the common variables x′ occur), such that in T :

A→ Int and Int ∧B |= ⊥

(I(x) ∧ τ(x, x′ �)) → Int(x′�)

Int(x′�) ∧ (τ(x′ �, x′ �′ �) ∧ U(x′ �′ �)) ⊧ ⊥

(Reverse) Interpolants
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(Reverse) Ordinary Interpolation
By definition of (reverse) ordinary interpolant, there is a formula
Int(x′) (where only the common variables x′ occur), such that in T :

A→ Int and Int ∧B |= ⊥(Reverse) Interpolants

Second Property

U(x)

⋂ = ∅

U(x)

⋂ = ∅

Int(x′�) ∧ (τ(x′ �, x′ �′ �) ∧ U(x′ �′ �)) ⊧ ⊥
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(Reverse) Ordinary Interpolation
By definition of (reverse) ordinary interpolant, there is a formula
Int(x′) (where only the common variables x′ occur), such that in T :

A→ Int and Int ∧B |= ⊥

(I(x) ∧ τ(x, x′ �)) → Int(x′�)
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(Reverse) Interpolants

Image ⊆ ApproxImageInt
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(Reverse) Ordinary Interpolation
By definition of (reverse) ordinary interpolant, there is a formula
Int(x′) (where only the common variables x′ occur), such that in T :

A→ Int and Int ∧B |= ⊥(Reverse) Interpolants

R(x) ← Int(x) ∨ R(x)
R(x) ← I(x)

Update          : R(x)
First Iteration: 
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(Reverse) Ordinary Interpolation
(Reverse) Interpolants

x′�′ �x′�x

R(x)

∃x, x′�(R(x) ∧ τ(x, x′ �) ∧ τ(x′ �, x′ �′�))
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(Reverse) Ordinary Interpolation: Backward

U(x)I(x)

Preimage Computation

∃x′ �(τ(x, x′ �) ∧ U(x′ �))
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(Reverse) Interpolation: Backward

First Step: exact preimages

I(x)

Uniform Interpolation

U(x)

∃x′ �(τ(x, x′ �) ∧ U(x′ �))
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(Reverse) Ordinary Interpolation: Backward

First Step: over-approximated preimages

I(x)

Uniform Interpolation

U(x)

Int(x)
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(Reverse) Ordinary Interpolation: Backward

Second Step: exact preimages

I(x)

Uniform Interpolation

U(x)

∃x′�, x′ �′ �(τ(x, x′ �) ∧ τ(x′ �, x′ �′ �) ∧ U(x′ �′�))
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(Reverse) Ordinary Interpolation: Backward

The ‘new’ set of final states is given by Int

I(x)

Uniform Interpolation

U(x)

∃x′ �(τ(x, x′ �) ∧ Int(x′ �))
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(Reverse) Ordinary Interpolation: Backward

Second Step: over-approximated preimages

I(x)

Uniform Interpolation

U(x)

Int(x)
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(Reverse) Ordinary Interpolation: Backward

I(x)

Uniform Interpolation

U(x)

Exact 
Preimage
Fixpoint!

∃x′ �, x′�′�, x′�′�′ �(τ(x, x′�) ∧ τ(x′�, x′�′�) ∧ τ(x′�′�, x′�′�′�) ∧ U(x′�′�′�))
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(Reverse) Ordinary Interpolation: Backward

Third Step: exact preimages. Fixpoint reached! The system is SAFE

I(x)

Uniform Interpolation

U(x)

Exact 
Preimage
Fixpoint!

Int(x)
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(Reverse) Ordinary Interpolation: Backward

Third Step: over-approximated preimages. Initial states intersected!

I(x)

Uniform Interpolation

U(x)

x′�
x

x′�′�
x′�′�′�
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(Reverse) Ordinary Interpolation: Backward

Spurious Trace! Refinement needed.

I(x)

Uniform Interpolation

U(x)

x′�
x

x′�′�
x′�′�′�
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Exact Preimages? Toward Model Completions

I(x)

Uniform Interpolation

U(x)

Pre(τ, U) := ∃x′ �(τ(x, x′�) ∧ U(x′ �))
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Exact Preimages? Toward Model Completions

I(x)

Uniform Interpolation

U(x)

QE(T, Pre(τ, U))???
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Exact Preimages? Toward Model Completions

I(x)

Uniform Interpolation

U(x)

QE(T, Pre(τ, U))???
Every interesting �  has QE?T
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DB theories do not have QE
• Modeling and verifying data-aware processes =⇒ combination of

different theories for defining the (Σ, T ) of their TS, such as:
(i) relational theories with key dependencies for the database;
(ii) datatypes for elements from value domains (e.g., numbers).

• Example: Simple Artifact Systems (SAS) [CGG+20]

I States: φ(x) (quantifier-free)
I Tr: τ(x, x′) ≡ ∃d, i, s(G(x, d, i, s) ∧ U(x, x′, d, i, s)) (existential)
I d: Persistent Data from DB;
I i: elements from arithmetical domains (integers or reals).
I s: values of string type.

Artifact-Centric Systems can be formalized using three components 
[Deutsch et al., 2016; Li et al., 2017]:

• a read-only database (i.e., the static part of the information model)

• an artifact working memory (i.e., the evolving part of the information 
model): artifact instances (variables and/or artifact relations)

• actions (which trigger the lifecycle of business entities)

Artifact-Centric Systems
Classic Artifact-Centric Systems 
([Deutsch et al., 2016; Li et al., 2017]):

In [MSCS20], we introduce a variant of Artifact-
Centric Systems in a fully declarative SMT 
setting  (i.e. array-based systems), called 
Relational Artifact Systems (RASs)

 β  γ α

Read-only DB - 
Persistent Storage

DB

Artifact
Instances

Actions

Query Query  +  Update

Artifact-Centric Systems
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DB theories do not have QE

• Persistent Data from DB

I EUF with multiple sorts, unary functions and n-ary relations
(algebraic formalization of relational DBs with key dependencies).

I This theory does not admit QE (but it admits a model completion).
• Values of string type

I Again, EUF with multiple sorts (formalization of datatypes like
strings).

I EUF with multiple sorts does not admit QE (but has a model
completion).

• Arithmetical values

I LIA and LRA (integer and real numbers).
I These theories admit QE (e.g., Cooper’s algorithm for LIA).

• The combination of all these theories, clearly, does not admit QE
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Exact Preimages? Toward Model Completions

Theories used in the verification of data-aware processes do not admit QE.

I(x)

Uniform Interpolation

U(x)

QE(T, Pre(τ, U))???
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Motivation: Recap
• Infinite-state model checking =⇒ sets of (reachable) states and

transitions represented symbolically.

• Precise computations of the set of reachable states through Quantifier
Elimination (QE).
• Usually, QE is computationally intractable (for instance,

arithmetics), or not available at all (DB theories).
• Methods for symbol elimination [KV09, JM09] (e.g., ordinary

interpolation):

I quite efficient;
I over-approximate states;
I the computation is not exact.

• QE in richer theories (model completions) ⇔ uniform interpolants
(or, covers [GM08]): tractable in significant cases [CGG+21].
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QE and Finding Solutions to Equations

• Eliminating quantifiers ⇔ eliminating existential quantifiers from
primitive formulae.

• Logical counterpart of finding witnesses, i.e., solutions, to systems of
equations and/or disequalities expressed in logical form.

• Model-theoretic algebra [Rob63]: powerful setting for formulating the
problem in algebraic terms, exploiting tools from model theory.

• Model completions: theories whose models satisfy all formulae that
are satisfiable in extended structures.
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Existentially Closed Models

• A quantifier-free formula with parameters in a model M is solvable if
there is an extension M ′ of M where the formula is satisfied.

• For instance, some equations do not have solutions in real numbers,
but do have in the extension of complex numbers.

• A model M is existentially closed if any solvable quantifier-free
formula already has a solution in M itself.

• In significant cases, existentially closed models of T are exactly the
models of another FO theory T ∗: the model completion of T .
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Existentially closed models

Definition (Existentially closed model)
A model M of a Σ-theory T is said to be existentially closed for T if, for
every extension N of M such that N is a model of T , every existential
Σ|M|-sentence that holds in N holds also in M.

Models of �T

Existentially 
Closed Models

Extension

Existentially
Closed Model

∃x ϕ(x)

Models of �T

Existentially 
Closed Models

Extension

Existentially
Closed Model

∃x ϕ(x)
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Model Completion

Definition (Model Completion [CK90])
Let T be a universal Σ-theory and let T ? ⊇ T be a further Σ-theory; we
say that T ? is a model completion of T iff: (C.i) every model of T can be
embedded into a model of T ?; .(C.ii) T ? admits Quantifier Elimination.

Remark
• The models of T ∗ are exactly all the existentially closed models for T .
• T ∗ admits QE even when T does not!

The model completion of a theory, if it exists, is unique.
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A Mathematical Example
Consider the algebraic field R of real numbers, and the algebraically
closed field C of complex numbers.

• R ↪→ C, i.e., C is an extension of R (embedding) (C.ii)
• x2 + 1 = 0 has no solution in R, whereas in C there is an element i

such that i2 + 1 = 0;
Notice: the solution of an equation is an existential formula in the
signature of algebraic fields!

• C is an existentially closed model, whereas R is not.
• The existential quantifier can be eliminated in the theory of

algebraically closed fields, but not in the theory of fields! (C.i)
• Algebraically closed fields are the model completion of

algebraic fields
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Exact Preimages? Toward Model Completions
• Theories used in the verification of data-aware processes (DB

theories) do not admit QE.

• How to handle the quantifiers there?
• Is it possible to enrich T in a ‘conservative way’ so as to get

computationally tractable QE?

I(x)

Uniform Interpolation

U(x)

QE(T, Pre(τ, U))???
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Solution: Model Completions

The answer is YES. Indeed, for a DB theory (Σ, T ), there exists a
‘minimal richer theory’ (Σ, T ∗) that extends T and s.t. T ∗ does have
QE. T ∗ is exactly the model completion of T .

↪
For a DB theory � , there exists a ‘minimal richer theory’ 
�  that extends �  and such that �  does have QE.

T
T* T T*

Usually, DB theories do not have QE.

T T*

x x′� x′�′ �

U

I

τ
τ x x′� x′�′ �

U

I

τ
τ

• An unsafe trace in a model of T lifted into a model of T ∗ (C.i).
Here, we eliminate the quantifiers (C.ii).
• An unsafe trace in a model of T ∗ is an unsafe trace in T (T ⊆ T ∗).
• Hence, detecting safety in T or in T ∗ are equivalent problems!
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Exact Preimages? Model Completions
• Theories used in the verification of data-aware processes do not admit

QE, but admit model completions!

• For instance, DB theories such as combinations of EUF ,LIA,LRA
have model completions.

I(x)

Uniform Interpolation

U(x)

QE(T, Pre(τ, U))???
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Exact Preimages? Model Completions

• The QE is performed in T∗, and not in T !

• Exact Preimages!!! No refinement needed.
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Covers [GM08]

Fix a theory T and an existential formula ∃e φ(e, y).
• A (qf) formula ψ(y) is a T -cover of ∃e φ(e, y) iff

(i) ψ(y) ∈ Res(∃e φ) := {θ(y, z) | T |= φ(e, y)→ θ(y, z)},
(ii) ψ(y) implies (modulo T ) all the formulae in Res(∃e φ).

• T -covers and T -quantifier-free UIs are the same notion.
• Intuitively, it is the strongest formula implied by ∃e φ(e, y).
• In the cover ψ(y), the variables e have been ’eliminated’, in some

sense.
• But, in general, ψ(y) does not imply ∃e φ(e, y). Hence, usually
ψ(y) and ∃e φ(e, y) are not T -equivalent.
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Model Completions and UIs
Equivalence between QE in model completions and Uniform
Interpolants (or Covers)

Theorem (UIs and QE [CGG+21])

Let T be a universal theory. Then, T has a model completion T ∗ iff T has
uniform quantifier-free interpolation. T ∗ is axiomatized by the infinitely
many sentences ∀y (ψ(y)→ ∃e φ(e, y)), where ∃e φ(e, y) is a primitive
formula and ψ is a UI of it.

Remark
• In T ∗, thanks to the axioms, the UI ψ(y) implies ∃e φ(e, y)!
• Hence, the UI ψ(y) is a quantifier-free formula that is T ∗-equivalent

to the quantified formula ∃e φ(e, y)!
• The UI ψ(y) is the formula that eliminates the quantifiers from
∃e φ(e, y)!
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Theorem (UIs and QE [CGG+21])
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uniform quantifier-free interpolation. T ∗ is axiomatized by the infinitely
many sentences ∀y (ψ(y)→ ∃e φ(e, y)), where ∃e φ(e, y) is a primitive
formula and ψ is a UI of it.

Thus, computing UIs in a theory T
is equivalent to

eliminating quantifiers in its model completion T ∗
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Model Completions and UIs

Model Completion = 
Existentially Closed Models

“Equations are solvable in 
extensions”  

[not a quote, but still evocative]

‘light’ QE
=

strong 
interpolation

=
UIs

Abraham Robinson
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Uniform Interpolants in EUF

• Quantifier Elimination in model completions: computing exact
images when performing reachability, specifically for DB theories.

• QE in model completions equivalent to computing UI in the original
DB theory.
• EUF =⇒ formalize the basic theory of relational DBs with key

dependencies.
• UIs in EUF can be computed via a constrained version of the

Superposition Calculus with suitable application strategies;
• This computation is tractable for multi-sorted EUF with unary

functions and n-ary relations, making UIs crucial in verification of
data-aware processes.
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Ingredients fo the UI algorithm for EUF

• Preprocessing: Flattening of terms/literals w.r.t. to e variables
(e-flattening).

I Example: f(t(y), e) = e, where f is a function symbol and t a generic
term, is an e-flat literal.

• Subroutine E(t, u): unification w.r.t. the variables y (the e variables
are considered as constants). Example:

I E(t, u) fails if t ≡ ei and u ≡ ej for i 6= j;
I If t := g(y1) and u := y2, we have E(t, u) = {t = u} ;
I If t := f(e, y1, y2) and u := f(e, y3, y4), the subroutine E(t, u) is

defined inductively, i.e., E(t, u) = E(y1, y3) ∪ E(y2, u4), which, in
turn, is equal to E(t, u) = {y1 = y3, y2 = y4}
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Constrained Superposition Calculus
Rules of the Constrained Superposition Calculus (constr-SC) for
computing UIs in EUF [CGG+21]:

156 7.3. Covers via Constrained Superposition

• E(t, u) = {t = u} if t and u are di�erent but both e-free;
• E(t, u) fails if neither of t, u is e-free, t © f(t1, . . . , tk) and u © g(u1, . . . , ul) for

f ”© g;
• E(t, u) = E(t1, u1) fi · · · fi E(tk, uk) if neither of t, u is e-free, t © f(t1, . . . , tk),

u © f(u1, . . . , uk) and none of the E(ti, ui) fails.
Notice that, whenever E(t, u) succeeds, the formula w

E(t, u) æ t = u is universally
valid. The definition of E(t, u) is motivated by the next lemma.

Lemma 7.3.1. Let R be a convergent (i.e. terminating and confluent) ground
rewriting system, whose rules consist of e-free terms. Suppose that t and u are
e-flat terms with the same R-normal form. Then E(t, u) does not fail and all pairs
from E(t, u) have the same R-normal form as well.

Proof. This is due to the fact that if t is not e-free, no R-rewriting is possible at
root position because rules from R are e-free.

In the following, we handle constrained ground flat literals of the form L Î C

where L is a ground flat literal and C is a conjunction of ground equalities among
e-free terms. The logical meaning of L Î C is the Horn clause w

C æ L.
In the literature, various calculi with constrained clauses were considered,

starting, e.g., from the non-ground constrained versions of the Superposition Calculus
of [Bac+95; NR95]. The calculus we propose here is inspired by such versions and it
has close similarities with a subcase of hierarchic superposition calculus [BGW94],
or rather to its “weak abstraction” variant from [BW13].

The rules of our Constrained Superposition Calculus (SuperCover) follow; each
rule applies provided the E subprocedure called by it does not fail. The symbol ‹
indicates the empty clause. Further explanations and restrictions to the calculus
are given in the Remarks below.

“weak abstraction” variant from [6] (we thank an anonymous referee of our CADE
2019 submission for pointing out this connection).

The rules of our Constrained Superposition Calculus follow; each rule applies
provided the E subprocedure called by it does not fail. The symbol � indicates
the empty clause. Further explanations and restrictions to the calculus are given
in the Remarks below.
Superposition Right

(Constrained)
l = r � C s = t � D

s[r]p = t � C �D � E(s|p, l)
if l > r and s > t

Superposition Left
(Constrained)

l = r � C s �= t � D

s[r]p �= t � C �D � E(s|p, l)
if l > r and s > t

Reflection
(Constrained)

t �= u � C

� � C � E(t, u)

Demodulation
(Constrained)

L � C, l = r �D
L[r]p � C

if l > r, L|p � l
and C � D

Remark 5.1. The first three rules are inference rules: they are non-deterministic-
ally selected for application, until no rule applies anymore. The selection strategy
for the rule to be applied is not relevant for the correctness and completeness
of the algorithm (some variant of a ‘given clause algorithm’ can be applied). An
inference rule is not applied in case one premise is e-free (we have no reason to
apply inferences to e-free premises, since we are not looking for a refutation). �

Remark 5.2. The Demodulation rule is a simplification rule: its application not
only adds the conclusion to the current set of constrained literals, but it also
removes the first premise. It is easy to see (e.g., representing literals as multisets
of terms and extending the total reduction ordering to multisets), that one cannot
have an infinite sequence of consecutive applications of Demodulation rules. �

Remark 5.3. The calculus takes {L�� | L is a flat literal from the matrix of �}
as the initial set of constrained literals. It terminates when a saturated set of con-
strained literals is reached. We say that S is saturated i� every constrained literal
that can be produced by an inference rule, after being exhaustively simplified via
Demodulation, is already in S (there are more sophisticated notions of ‘saturation
up to redundancy’ in the literature, but we do not need them). When it reaches
a saturated set S, the algorithm outputs the conjunction of the clauses

�
C � L,

varying L �C among the e-free constrained literals from S. �

We need some rule application policy to ensure termination: without any such
policy, a set like

{e = y � �, f(e) = e� �} (4)

may produce by Right Superposition the infinitely many literals (all oriented from
right to left) f(y) = e � �, f(f(y)) = e � �, f(f(f(y))) = e � �, etc. The next remark
explains the policy we follow.

Remark 5.4. [Policy Remark] We apply Demodulation only in case the sec-
ond premise is of the kind ej = t(y) �D, where t is e-free. Demodulation rule is

applied with higher priority with respect to the inference rules.6 Inside all possible
applications of Demodulation rule, we give priority to the applications where both

6 Thus we cannot apply Superposition to {e = y � �, f(e) = e� �} until Demodulation is
exhaustively applied (the latter causes the deletion of f(e) = e� � and its replacement with
f(y) = y� �, thus blocking the above generation of infinitely many clauses).

15

Remark 7.3.1. The first three rules are inference rules: they are non-deterministic-
ally selected for application, until no rule applies anymore. The selection strategy
for the rule to be applied is not relevant for the correctness and completeness of
the algorithm (some variant of a ‘given clause algorithm’ can be applied). An
inference rule is not applied in case one premise is e-free (we have no reason to
apply inferences to e-free premises, since we are not looking for a refutation).

The calculus is equipped with appropriate reduction application strategies, 
which guarantee termination.

The subprocedure E performs a suitable unification algorithm. Each rule 
applies only if the subprocedure E does not fail.

Rules of the Constrained Superposition Calculus (SuperCover) for computing 
covers in EUF, the basic DB theory.

Basic DB schema: SuperCover
[CADE19,JAR21]

Superposition Right
(Constrained)

Superposition Left
(Constrained)

Reflection
(Constrained)

Demodulation
(Constrained)

• The calculus is equipped with appropriate reduction application
strategies.
• Each rule applies only if the subroutine E does not fail.

Alessandro Gianola UIs and Model Completions in Verification iPRA 2022 39 / 55



Constrained Superposition Calculus
Rules of the Constrained Superposition Calculus (constr-SC) for
computing UIs in EUF [CGG+21]:

156 7.3. Covers via Constrained Superposition

• E(t, u) = {t = u} if t and u are di�erent but both e-free;
• E(t, u) fails if neither of t, u is e-free, t © f(t1, . . . , tk) and u © g(u1, . . . , ul) for

f ”© g;
• E(t, u) = E(t1, u1) fi · · · fi E(tk, uk) if neither of t, u is e-free, t © f(t1, . . . , tk),

u © f(u1, . . . , uk) and none of the E(ti, ui) fails.
Notice that, whenever E(t, u) succeeds, the formula w

E(t, u) æ t = u is universally
valid. The definition of E(t, u) is motivated by the next lemma.

Lemma 7.3.1. Let R be a convergent (i.e. terminating and confluent) ground
rewriting system, whose rules consist of e-free terms. Suppose that t and u are
e-flat terms with the same R-normal form. Then E(t, u) does not fail and all pairs
from E(t, u) have the same R-normal form as well.

Proof. This is due to the fact that if t is not e-free, no R-rewriting is possible at
root position because rules from R are e-free.

In the following, we handle constrained ground flat literals of the form L Î C

where L is a ground flat literal and C is a conjunction of ground equalities among
e-free terms. The logical meaning of L Î C is the Horn clause w

C æ L.
In the literature, various calculi with constrained clauses were considered,

starting, e.g., from the non-ground constrained versions of the Superposition Calculus
of [Bac+95; NR95]. The calculus we propose here is inspired by such versions and it
has close similarities with a subcase of hierarchic superposition calculus [BGW94],
or rather to its “weak abstraction” variant from [BW13].

The rules of our Constrained Superposition Calculus (SuperCover) follow; each
rule applies provided the E subprocedure called by it does not fail. The symbol ‹
indicates the empty clause. Further explanations and restrictions to the calculus
are given in the Remarks below.

“weak abstraction” variant from [6] (we thank an anonymous referee of our CADE
2019 submission for pointing out this connection).

The rules of our Constrained Superposition Calculus follow; each rule applies
provided the E subprocedure called by it does not fail. The symbol � indicates
the empty clause. Further explanations and restrictions to the calculus are given
in the Remarks below.
Superposition Right

(Constrained)
l = r � C s = t � D

s[r]p = t � C �D � E(s|p, l)
if l > r and s > t

Superposition Left
(Constrained)

l = r � C s �= t � D

s[r]p �= t � C �D � E(s|p, l)
if l > r and s > t

Reflection
(Constrained)

t �= u � C

� � C � E(t, u)

Demodulation
(Constrained)

L � C, l = r �D
L[r]p � C

if l > r, L|p � l
and C � D

Remark 5.1. The first three rules are inference rules: they are non-deterministic-
ally selected for application, until no rule applies anymore. The selection strategy
for the rule to be applied is not relevant for the correctness and completeness
of the algorithm (some variant of a ‘given clause algorithm’ can be applied). An
inference rule is not applied in case one premise is e-free (we have no reason to
apply inferences to e-free premises, since we are not looking for a refutation). �

Remark 5.2. The Demodulation rule is a simplification rule: its application not
only adds the conclusion to the current set of constrained literals, but it also
removes the first premise. It is easy to see (e.g., representing literals as multisets
of terms and extending the total reduction ordering to multisets), that one cannot
have an infinite sequence of consecutive applications of Demodulation rules. �

Remark 5.3. The calculus takes {L�� | L is a flat literal from the matrix of �}
as the initial set of constrained literals. It terminates when a saturated set of con-
strained literals is reached. We say that S is saturated i� every constrained literal
that can be produced by an inference rule, after being exhaustively simplified via
Demodulation, is already in S (there are more sophisticated notions of ‘saturation
up to redundancy’ in the literature, but we do not need them). When it reaches
a saturated set S, the algorithm outputs the conjunction of the clauses

�
C � L,

varying L �C among the e-free constrained literals from S. �

We need some rule application policy to ensure termination: without any such
policy, a set like

{e = y � �, f(e) = e� �} (4)

may produce by Right Superposition the infinitely many literals (all oriented from
right to left) f(y) = e � �, f(f(y)) = e � �, f(f(f(y))) = e � �, etc. The next remark
explains the policy we follow.

Remark 5.4. [Policy Remark] We apply Demodulation only in case the sec-
ond premise is of the kind ej = t(y) �D, where t is e-free. Demodulation rule is

applied with higher priority with respect to the inference rules.6 Inside all possible
applications of Demodulation rule, we give priority to the applications where both

6 Thus we cannot apply Superposition to {e = y � �, f(e) = e� �} until Demodulation is
exhaustively applied (the latter causes the deletion of f(e) = e� � and its replacement with
f(y) = y� �, thus blocking the above generation of infinitely many clauses).

15

Remark 7.3.1. The first three rules are inference rules: they are non-deterministic-
ally selected for application, until no rule applies anymore. The selection strategy
for the rule to be applied is not relevant for the correctness and completeness of
the algorithm (some variant of a ‘given clause algorithm’ can be applied). An
inference rule is not applied in case one premise is e-free (we have no reason to
apply inferences to e-free premises, since we are not looking for a refutation).

The calculus is equipped with appropriate reduction application strategies, 
which guarantee termination.

The subprocedure E performs a suitable unification algorithm. Each rule 
applies only if the subprocedure E does not fail.

Rules of the Constrained Superposition Calculus (SuperCover) for computing 
covers in EUF, the basic DB theory.

Basic DB schema: SuperCover
[CADE19,JAR21]

Superposition Right
(Constrained)

Superposition Left
(Constrained)

Reflection
(Constrained)

Demodulation
(Constrained)

• The calculus is equipped with appropriate reduction application
strategies.
• Each rule applies only if the subroutine E does not fail.

Alessandro Gianola UIs and Model Completions in Verification iPRA 2022 39 / 55



Constrained Superposition Calculus
Rules of the Constrained Superposition Calculus (constr-SC) for
computing UIs in EUF [CGG+21]:

156 7.3. Covers via Constrained Superposition

• E(t, u) = {t = u} if t and u are di�erent but both e-free;
• E(t, u) fails if neither of t, u is e-free, t © f(t1, . . . , tk) and u © g(u1, . . . , ul) for

f ”© g;
• E(t, u) = E(t1, u1) fi · · · fi E(tk, uk) if neither of t, u is e-free, t © f(t1, . . . , tk),

u © f(u1, . . . , uk) and none of the E(ti, ui) fails.
Notice that, whenever E(t, u) succeeds, the formula w

E(t, u) æ t = u is universally
valid. The definition of E(t, u) is motivated by the next lemma.

Lemma 7.3.1. Let R be a convergent (i.e. terminating and confluent) ground
rewriting system, whose rules consist of e-free terms. Suppose that t and u are
e-flat terms with the same R-normal form. Then E(t, u) does not fail and all pairs
from E(t, u) have the same R-normal form as well.

Proof. This is due to the fact that if t is not e-free, no R-rewriting is possible at
root position because rules from R are e-free.

In the following, we handle constrained ground flat literals of the form L Î C

where L is a ground flat literal and C is a conjunction of ground equalities among
e-free terms. The logical meaning of L Î C is the Horn clause w

C æ L.
In the literature, various calculi with constrained clauses were considered,

starting, e.g., from the non-ground constrained versions of the Superposition Calculus
of [Bac+95; NR95]. The calculus we propose here is inspired by such versions and it
has close similarities with a subcase of hierarchic superposition calculus [BGW94],
or rather to its “weak abstraction” variant from [BW13].

The rules of our Constrained Superposition Calculus (SuperCover) follow; each
rule applies provided the E subprocedure called by it does not fail. The symbol ‹
indicates the empty clause. Further explanations and restrictions to the calculus
are given in the Remarks below.

“weak abstraction” variant from [6] (we thank an anonymous referee of our CADE
2019 submission for pointing out this connection).

The rules of our Constrained Superposition Calculus follow; each rule applies
provided the E subprocedure called by it does not fail. The symbol � indicates
the empty clause. Further explanations and restrictions to the calculus are given
in the Remarks below.
Superposition Right

(Constrained)
l = r � C s = t � D

s[r]p = t � C �D � E(s|p, l)
if l > r and s > t

Superposition Left
(Constrained)

l = r � C s �= t � D

s[r]p �= t � C �D � E(s|p, l)
if l > r and s > t

Reflection
(Constrained)

t �= u � C

� � C � E(t, u)

Demodulation
(Constrained)

L � C, l = r �D
L[r]p � C

if l > r, L|p � l
and C � D

Remark 5.1. The first three rules are inference rules: they are non-deterministic-
ally selected for application, until no rule applies anymore. The selection strategy
for the rule to be applied is not relevant for the correctness and completeness
of the algorithm (some variant of a ‘given clause algorithm’ can be applied). An
inference rule is not applied in case one premise is e-free (we have no reason to
apply inferences to e-free premises, since we are not looking for a refutation). �

Remark 5.2. The Demodulation rule is a simplification rule: its application not
only adds the conclusion to the current set of constrained literals, but it also
removes the first premise. It is easy to see (e.g., representing literals as multisets
of terms and extending the total reduction ordering to multisets), that one cannot
have an infinite sequence of consecutive applications of Demodulation rules. �

Remark 5.3. The calculus takes {L�� | L is a flat literal from the matrix of �}
as the initial set of constrained literals. It terminates when a saturated set of con-
strained literals is reached. We say that S is saturated i� every constrained literal
that can be produced by an inference rule, after being exhaustively simplified via
Demodulation, is already in S (there are more sophisticated notions of ‘saturation
up to redundancy’ in the literature, but we do not need them). When it reaches
a saturated set S, the algorithm outputs the conjunction of the clauses

�
C � L,

varying L �C among the e-free constrained literals from S. �

We need some rule application policy to ensure termination: without any such
policy, a set like

{e = y � �, f(e) = e� �} (4)

may produce by Right Superposition the infinitely many literals (all oriented from
right to left) f(y) = e � �, f(f(y)) = e � �, f(f(f(y))) = e � �, etc. The next remark
explains the policy we follow.

Remark 5.4. [Policy Remark] We apply Demodulation only in case the sec-
ond premise is of the kind ej = t(y) �D, where t is e-free. Demodulation rule is

applied with higher priority with respect to the inference rules.6 Inside all possible
applications of Demodulation rule, we give priority to the applications where both

6 Thus we cannot apply Superposition to {e = y � �, f(e) = e� �} until Demodulation is
exhaustively applied (the latter causes the deletion of f(e) = e� � and its replacement with
f(y) = y� �, thus blocking the above generation of infinitely many clauses).

15

Remark 7.3.1. The first three rules are inference rules: they are non-deterministic-
ally selected for application, until no rule applies anymore. The selection strategy
for the rule to be applied is not relevant for the correctness and completeness of
the algorithm (some variant of a ‘given clause algorithm’ can be applied). An
inference rule is not applied in case one premise is e-free (we have no reason to
apply inferences to e-free premises, since we are not looking for a refutation).

The calculus is equipped with appropriate reduction application strategies, 
which guarantee termination.

The subprocedure E performs a suitable unification algorithm. Each rule 
applies only if the subprocedure E does not fail.

Rules of the Constrained Superposition Calculus (SuperCover) for computing 
covers in EUF, the basic DB theory.

Basic DB schema: SuperCover
[CADE19,JAR21]

Superposition Right
(Constrained)

Superposition Left
(Constrained)

Reflection
(Constrained)

Demodulation
(Constrained)

• The calculus is equipped with appropriate reduction application
strategies.

• Each rule applies only if the subroutine E does not fail.

Alessandro Gianola UIs and Model Completions in Verification iPRA 2022 39 / 55



Constrained Superposition Calculus
Rules of the Constrained Superposition Calculus (constr-SC) for
computing UIs in EUF [CGG+21]:

156 7.3. Covers via Constrained Superposition

• E(t, u) = {t = u} if t and u are di�erent but both e-free;
• E(t, u) fails if neither of t, u is e-free, t © f(t1, . . . , tk) and u © g(u1, . . . , ul) for

f ”© g;
• E(t, u) = E(t1, u1) fi · · · fi E(tk, uk) if neither of t, u is e-free, t © f(t1, . . . , tk),

u © f(u1, . . . , uk) and none of the E(ti, ui) fails.
Notice that, whenever E(t, u) succeeds, the formula w

E(t, u) æ t = u is universally
valid. The definition of E(t, u) is motivated by the next lemma.

Lemma 7.3.1. Let R be a convergent (i.e. terminating and confluent) ground
rewriting system, whose rules consist of e-free terms. Suppose that t and u are
e-flat terms with the same R-normal form. Then E(t, u) does not fail and all pairs
from E(t, u) have the same R-normal form as well.

Proof. This is due to the fact that if t is not e-free, no R-rewriting is possible at
root position because rules from R are e-free.

In the following, we handle constrained ground flat literals of the form L Î C

where L is a ground flat literal and C is a conjunction of ground equalities among
e-free terms. The logical meaning of L Î C is the Horn clause w

C æ L.
In the literature, various calculi with constrained clauses were considered,

starting, e.g., from the non-ground constrained versions of the Superposition Calculus
of [Bac+95; NR95]. The calculus we propose here is inspired by such versions and it
has close similarities with a subcase of hierarchic superposition calculus [BGW94],
or rather to its “weak abstraction” variant from [BW13].

The rules of our Constrained Superposition Calculus (SuperCover) follow; each
rule applies provided the E subprocedure called by it does not fail. The symbol ‹
indicates the empty clause. Further explanations and restrictions to the calculus
are given in the Remarks below.

“weak abstraction” variant from [6] (we thank an anonymous referee of our CADE
2019 submission for pointing out this connection).

The rules of our Constrained Superposition Calculus follow; each rule applies
provided the E subprocedure called by it does not fail. The symbol � indicates
the empty clause. Further explanations and restrictions to the calculus are given
in the Remarks below.
Superposition Right

(Constrained)
l = r � C s = t � D

s[r]p = t � C �D � E(s|p, l)
if l > r and s > t

Superposition Left
(Constrained)

l = r � C s �= t � D

s[r]p �= t � C �D � E(s|p, l)
if l > r and s > t

Reflection
(Constrained)

t �= u � C

� � C � E(t, u)

Demodulation
(Constrained)

L � C, l = r �D
L[r]p � C

if l > r, L|p � l
and C � D

Remark 5.1. The first three rules are inference rules: they are non-deterministic-
ally selected for application, until no rule applies anymore. The selection strategy
for the rule to be applied is not relevant for the correctness and completeness
of the algorithm (some variant of a ‘given clause algorithm’ can be applied). An
inference rule is not applied in case one premise is e-free (we have no reason to
apply inferences to e-free premises, since we are not looking for a refutation). �

Remark 5.2. The Demodulation rule is a simplification rule: its application not
only adds the conclusion to the current set of constrained literals, but it also
removes the first premise. It is easy to see (e.g., representing literals as multisets
of terms and extending the total reduction ordering to multisets), that one cannot
have an infinite sequence of consecutive applications of Demodulation rules. �

Remark 5.3. The calculus takes {L�� | L is a flat literal from the matrix of �}
as the initial set of constrained literals. It terminates when a saturated set of con-
strained literals is reached. We say that S is saturated i� every constrained literal
that can be produced by an inference rule, after being exhaustively simplified via
Demodulation, is already in S (there are more sophisticated notions of ‘saturation
up to redundancy’ in the literature, but we do not need them). When it reaches
a saturated set S, the algorithm outputs the conjunction of the clauses

�
C � L,

varying L �C among the e-free constrained literals from S. �

We need some rule application policy to ensure termination: without any such
policy, a set like

{e = y � �, f(e) = e� �} (4)

may produce by Right Superposition the infinitely many literals (all oriented from
right to left) f(y) = e � �, f(f(y)) = e � �, f(f(f(y))) = e � �, etc. The next remark
explains the policy we follow.

Remark 5.4. [Policy Remark] We apply Demodulation only in case the sec-
ond premise is of the kind ej = t(y) �D, where t is e-free. Demodulation rule is

applied with higher priority with respect to the inference rules.6 Inside all possible
applications of Demodulation rule, we give priority to the applications where both

6 Thus we cannot apply Superposition to {e = y � �, f(e) = e� �} until Demodulation is
exhaustively applied (the latter causes the deletion of f(e) = e� � and its replacement with
f(y) = y� �, thus blocking the above generation of infinitely many clauses).

15

Remark 7.3.1. The first three rules are inference rules: they are non-deterministic-
ally selected for application, until no rule applies anymore. The selection strategy
for the rule to be applied is not relevant for the correctness and completeness of
the algorithm (some variant of a ‘given clause algorithm’ can be applied). An
inference rule is not applied in case one premise is e-free (we have no reason to
apply inferences to e-free premises, since we are not looking for a refutation).

The calculus is equipped with appropriate reduction application strategies, 
which guarantee termination.

The subprocedure E performs a suitable unification algorithm. Each rule 
applies only if the subprocedure E does not fail.

Rules of the Constrained Superposition Calculus (SuperCover) for computing 
covers in EUF, the basic DB theory.

Basic DB schema: SuperCover
[CADE19,JAR21]

Superposition Right
(Constrained)

Superposition Left
(Constrained)

Reflection
(Constrained)

Demodulation
(Constrained)

• The calculus is equipped with appropriate reduction application
strategies.
• Each rule applies only if the subroutine E does not fail.
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Termination, Correctness, and Complexity

The e-flattening is needed for termination, but not sufficient: infinitely
many e-flat terms in principle generated during saturation.

Proposition (Termination [CGG+21])
Thanks to the application strategy, the saturation of the initial set of
e-flat constrained literals always terminates after finitely many steps.

Theorem (Correctness [CGG+21])

If constr-SC takes as input the primitive e-flat formula ∃e φ(e, y), then it
gives as output the qf formula ψ(y), which is a (qf) uniform interpolant
of ∃e φ(e, y).

DB theory EUF with multiple sorts, unary functions and n-ary relations:
UIs in polynomial time (with a quadratic bound).
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The Problem of Combined Uniform Interpolation

• Verification of data-aware processes requires combination of
different theories for formalizing the DB (e.g., EUF , LIA, LRA).

• Important question: is it possible (and, if so, under which
conditions) to transfer UIs from two theories T1, T2 to the theory
combination T1 ∪ T2?

• For disjoint-signature convex theories: Yes, under the same
hypothesis for the transfer of ordinary interpolation – the equality
interpolating condition [YM05].

• Using Beth definability: devise a combined UI algorithm that
employs the component UI algorithms.
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Equality Interpolating Condition

Sufficient and, in some sense, necessary condition for transferring qf
ordinary interpolants:

Definition ([YM05])
A convex universal theory T is equality interpolating iff for every pair y1, y2
of variables and for every pair of constraints δ1(x, z1, y1), δ2(x, z2, y2)
such that T ` δ1(x, z1, y1) ∧ δ2(x, z2, y2)→ y1 = y2, there exists a term
t(x) such that T ` δ1(x, z1, y1) ∧ δ2(x, z2, y2)→ y1 = t(x) ∧ y2 = t(x).

Examples of universal quantifier-free interpolating and equality
interpolating theories:

• EUF(Σ), given a signature Σ;
• recursive data theories;
• linear arithmetics.
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Beth Definability and Equality Interpolating Condition
Equality interpolating can be characterized using Beth definability.

Given a primitive formula ∃zφ(x, z, y), we say that:

• ∃z φ(x, z, y) implicitly defines y in T iff the following formula is
T -valid: ∀y ∀y′ (∃zφ(x, z, y) ∧ ∃zφ(x, z, y′)→ y = y′);
• ∃z φ(x, z, y) explicitly defines y in T iff there is a term t(x) such that

the formula is T -valid: ∀y (∃zφ(x, z, y)→ y = t(x));
• a theory T has the Beth definability property for primitive formulae

iff whenever a primitive formula ∃z φ(x, z, y) implicitly defines the
variable y then it also explicitly defines it.
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Beth Definability and Equality Interpolating Condition
Equality interpolating can be characterized using Beth definability.

Given a primitive formula ∃zφ(x, z, y):
• ∃z φ(x, z, y) implicitly defines y in T iff the following formula is
T -valid: ∀y ∀y′ (∃zφ(x, z, y) ∧ ∃zφ(x, z, y′)→ y = y′);
• ∃zφ(x, z, y) explicitly defines y in T iff there is a term t(x) such that

the formula is T -valid: ∀y (∃zφ(x, z, y)→ y = t(x));
• T has the Beth definability property iff whenever ∃z φ(x, z, y)

implicitly defines the variable y then it also explicitly defines it.

Theorem (Key Theorem [BGR14])

A convex theory T having quantifier-free interpolation is equality
interpolating iff it has the Beth definability property for primitive
formulae.
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Computing Combined UIs

• Every Σi-theory Ti from now on is convex, stably infinite, equality
interpolating, universal and admitting a model completion T ∗i .

• Given a Σ1-theory T1 and a Σ2-theory T2: compute a T1 ∪ T2-UI for
∃e φ(x, e) (Initial Formula).

• Preprocessing: the Initial Formula is transformed into
∃z (ExplDef(z, x) ∧ ∃e (ψ1(x, z, e) ∧ ψ2(x, z, e))), where

I ψi is a Σi-formula (i = 1, 2)
I ExplDef(z, x) ≡ ∧m

i=1 zi = ti(z1, . . . , zi−1, x) (the term ti is pure)
I x are called parameters, z defined variables and e existential variables
I ψ1, ψ2 always contain the literals ei 6= ej (for i 6= j).
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• Given a Σ1-theory T1 and a Σ2-theory T2: compute a T1 ∪ T2-UI for
∃e φ(x, e) (Initial Formula).

• Preprocessing: the Initial Formula transformed into a ‘purified’ formula,
where (acyclic) recursive explicit definitions are isolated.

• Intuitively, for every ei ∈ e:
I either ei is implicitly definable, so, via Beth definability, can be made

explicitly defined;
I or ei is not implicitly definable.

• The combined algorithm discovers implicitly definable variables and
eliminates them via explicit definability (via Beth definability): the obtained
formula is called terminal.
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Transfer of UIs

Given a terminal formula, the T1 ∪ T2-UI is modularly computed by:
• computing the T1-UI of the Σ1-pure part of the formula.
• computing the T2-UI of the Σ2-pure part of the formula.
• unfolding the (recursive) explicit definitions.

Theorem ([CGG+22])
Let T1, T2 be FO theories with the aforementioned hypotheses. Then
T1 ∪ T2 admits a model completion too. UIs in T1 ∪ T2 can be effectively
computed using the translating procedure above an the previous
proposition.
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Implicit vs Explicit Definability

Hidden implicit definitions must 
be discovered, because in 
theory combination they can 

propagate information from one 
theory to the other!

“Hidden implicit facts always 
need to be made explicit” 

[Again, not a citation, but a good synthesis]

Evert Willem Beth
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How crucial are the hypotheses?

• Equality interpolating is a necessary condition for UI transfer:
minimal combinations with uninterpreted symbols.

• Convexity hypothesis cannot be eliminated. Counterexample:

I T1 ∪ T2, where

F T1 := IDL (integer difference logic, which are integer numbers with
successor and predecessor, 0 and the strict order <)

F T2:= EUF(Σf ), where Σf has only one unary fresh function symbol f
(different from the symbols of T1)

I the formula ∃e (0 < e ∧ e < x ∧ f(e) = 0) does not have a UI in
T1 ∪ T2.

• Stable Infiniteness is already crucial for combined satisfiability (cf.
the Nelson-Oppen method!).
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Conclusions

• Uniform Interpolants: important tool in formal verification

I Compute exact images
I ‘Weak form’ of QE that is computationally tractable

• UIs have strict relationships with model completions: in these
theories, UIs eliminate quantifiers in a proper sense.

• For significant theories (DB with keys), UIs can be computed using
well-established techniques like the Superposition Calculus.

• Modular combined algorithms for UI computation: applications to
data-aware processes.
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Future Directions

Several open directions:

• Using UIs for verification tasks beyond safety (e.g. liveness, fairness);

• Compute UIs using variants of Superposition Calculus in case of
sophisticated background theories.

• UI transfer properties for proper non-disjoint signatures
combinations.

• Uniform Interpolants in SMT solvers
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Example of Computation of constr-SC

Input formula: f(e, y1) = y2 ∧ f(e, y3) = y4

Apply Superposition Right in root position, with:
• l ≡ f(e, y1),
• r ≡ y2,
• s ≡ f(e, y3),
• t ≡ y4

C and D are empty. We get E(s, l) ≡ {y1 = y3}

So, we produce the clause y1 = y3||{y2 = y4}, i.e., y1 = y3 → y2 = y4

.

y1 = y3 → y2 = y4 is the UI of the input formula

.
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Combined Algorithm: an Example
Let T1 be EUF(Σ) and T2 be linear real arithmetic.

Covers are computed in real arithmetic by quantifier elimination,
whereas for EUF(Σ) one can apply the superposition-based algorithm
from [CGG+21].
Consider the formula:

∃e1 · · · ∃e4




e1 = f(x1) ∧ e2 = f(x2) ∧
∧ f(e3) = e3 ∧ f(e4) = x1 ∧
∧ x1 + e1 ≤ e3 ∧ e3 ≤ x2 + e2 ∧ e4 = x2 + e3




Applying the combined algorithm, we get:

[x2 = 0 ∧ f(x1) = x1 ∧ x1 ≤ 0 ∧ x1 ≤ f(0)] ∨
∨ [x1 + f(x1) < x2 + f(x2) ∧ x2 6= 0] ∨

∨
[
x2 6= 0 ∧ x1 + f(x1) = x2 + f(x2) ∧ f(2x2 + f(x2)) = x1 ∧

∧ f(x1 + f(x1)) = x1 + f(x1)

]
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Artifact-Centric Systems
Artifact-Centric Systems: process-centric paradigm + data
(artifact = lifecycle + information model).

They can be formalized using three components:
• a read-only database (DB);
• an artifact working memory (e.g., artifact variables + artifact

relations);
• actions (also called services).

Artifact-Centric Systems can be formalized using three components 
[Deutsch et al., 2016; Li et al., 2017]:

• a read-only database (i.e., the static part of the information model)

• an artifact working memory (i.e., the evolving part of the information 
model): artifact instances (variables and/or artifact relations)

• actions (which trigger the lifecycle of business entities)

Artifact-Centric Systems
Classic Artifact-Centric Systems 
([Deutsch et al., 2016; Li et al., 2017]):

In [MSCS20], we introduce a variant of Artifact-
Centric Systems in a fully declarative SMT 
setting  (i.e. array-based systems), called 
Relational Artifact Systems (RASs)

 β  γ α

Read-only DB - 
Persistent Storage

DB

Artifact
Instances

Actions

Query Query  +  Update

Artifact-Centric Systems

Artifact-Centric Systems =⇒ Array-based Systems =⇒
SMT-based tool Model Checker Modulo Theories (MCMT)
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DB schemas
DB schemas: read-only DB of Artifact-Centric Systems, incorporating
primary keys and foreign keys dependencies

Definition
A DB schema is a pair (Σ, T ), where:
• Σ is a DB signature, that is, a finite multi-sorted signature with

equality, unary functions, n-ary relations and constants;
• T is a DB theory, that is, a set of universal Σ-sentences.

In a basic DB schema, T is empty. G(Σ): characteristic graph capturing
the dependencies induced by functions over sorts.
Example:
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Array-based Artifact-Centric Systems: a simplified version
A SAS (Simple Artifact Systems) is a tuple
S = 〈Σ, T, x, ι(x), τ(x, x′)〉, where:
• (Σ, T ) is a DB schema;
• x are individual FO variables representing the current state;
• ι is a Σ-formula representing the initialization;
• τ(x, x′) is a Σ-formula representing the transitions from the current

state x to the new state x′.
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A simple example

Job Hiring Process:

ι := (Applicant = undef ∧ JobPos = undef)

τ := ∃UserID, JobID
(

UserID 6= undef ∧ JobID 6= undef ∧ Applicant = undef∧
JobPos = undef ∧ Applicant′ := UserID ∧ JobPos′ := JobID

)
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Verification of safety in a SAS S

A safety formula for S: generic quantifier-free formula υ(x) =⇒
undesired states of S.

S is safe wrt υ iff in no model M of (Σ, T ), for no k ≥ 0 and for no
assignment in M to x0, . . . , xk (1) is true (xi are renamed copies of x):

ι(x0) ∧ τ(x0, x1) ∧ · · · ∧ τ(xk−1, xk) ∧ υ(xk) (1)

Safety problem for S: given υ, decide if S is safe wrt υ.

Theorem (Soundness and Completeness)
Backward search is effective, correct and complete (the last one w.r.t.
detecting unsafety) for the safety problems for SASs. If G(Σ) is acyclic,
backward search always terminates and it is a full decision procedure.
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