Uniform Interpolants and Model Completions in Formal Verification of Infinite-State Systems

Alessandro Gianola

KRDB Research Centre for Knowledge and Data Free University of Bozen-Bolzano, Italy

iPRA 2022 - FLoC 2022

August 11, 2022

ur

Acknowledgments

Diego Calvanese

Marco Montali

Silvio Ghilardi

Andrey Rivkin

Outline

- 2 Motivation from Formal Verification
- 3 QE in Model Completions and Uniform Interpolation
- 4 Computing UIs in \mathcal{EUF}
- 5 Computing UIs in Theory Combinations

6 Conclusions

Outline

1 Overview

- 2 Motivation from Formal Verification
- 3 QE in Model Completions and Uniform Interpolation
- 4 Computing UIs in \mathcal{EUF}
- 5 Computing Uls in Theory Combinations

6 Conclusions

• Stronger form of (Craig) Interpolation: Uniform Interpolation.

- Stronger form of (Craig) Interpolation: Uniform Interpolation.
- We focus on **Quantifier-free** Uniform Interpolants (UIs).

- Stronger form of (Craig) Interpolation: Uniform Interpolation.
- We focus on **Quantifier-free** Uniform Interpolants (UIs).
- Uls are a 'weak form' of Quantifier Elimination (QE):

- Stronger form of (Craig) Interpolation: Uniform Interpolation.
- We focus on **Quantifier-free** Uniform Interpolants (UIs).
- Uls are a 'weak form' of Quantifier Elimination (QE):
 - ► The UI of a quantified formula ∃<u>e</u> φ(<u>e</u>, <u>x</u>) is the *strongest* formula implied by ∃<u>e</u> φ(<u>e</u>, <u>x</u>);

- Stronger form of (Craig) Interpolation: Uniform Interpolation.
- We focus on **Quantifier-free** Uniform Interpolants (UIs).
- Uls are a 'weak form' of Quantifier Elimination (QE):
 - ► The UI of a quantified formula ∃<u>e</u> φ(<u>e</u>, <u>x</u>) is the *strongest* formula implied by ∃<u>e</u> φ(<u>e</u>, <u>x</u>);
 - Uls are strictly related to proper QE in model completions.

- Stronger form of (Craig) Interpolation: Uniform Interpolation.
- We focus on **Quantifier-free** Uniform Interpolants (UIs).
- Uls are a 'weak form' of Quantifier Elimination (QE):
 - ► The UI of a quantified formula ∃<u>e</u> φ(<u>e</u>, <u>x</u>) is the *strongest* formula implied by ∃<u>e</u> φ(<u>e</u>, <u>x</u>);
 - Uls are strictly related to proper QE in model completions.
- Applications to **verification of infinite-state systems**, where UIs are used to compute **sets of reachable states** in a *precise* way.

Ordinary Interpolation

William Craig

Ordinary Interpolation

William Craig

Let L be a fragment (propositional, FO quantifier-free, etc.) of the language of a theory T.

Let L be a fragment (propositional, FO quantifier-free, etc.) of the language of a theory T.

Definition (Ordinary Interpolation)

- $\phi(\underline{x},\underline{y}) \vdash_T \phi'(\underline{x});$
- $\phi'(\underline{x}) \vdash_T \psi(\underline{x}, \underline{z}).$

Let L be a fragment (propositional, FO quantifier-free, etc.) of the language of a theory T.

Definition (Ordinary Interpolation)

- $\phi(\underline{x},\underline{y}) \vdash_T \phi'(\underline{x});$
- $\phi'(\underline{x}) \vdash_T \psi(\underline{x}, \underline{z}).$
- Every pair of *L*-formulae (ϕ, ψ) has an ordinary interpolant $\implies T$ admits *(L)-ordinary (Craig) interpolation* [Cra57].

Let L be a fragment (propositional, FO quantifier-free, etc.) of the language of a theory T.

Definition (Ordinary Interpolation)

- $\phi(\underline{x},\underline{y}) \vdash_T \phi'(\underline{x});$
- $\phi'(\underline{x}) \vdash_T \psi(\underline{x}, \underline{z}).$
- Every pair of *L*-formulae (ϕ, ψ) has an ordinary interpolant $\implies T$ admits *(L)-ordinary (Craig) interpolation* [Cra57].
- **Reverse ordinary interpolant** for a pair (ϕ, ψ) : ordinary interpolant for the pair $(\phi(\underline{x}, \underline{y}), \neg \psi(\underline{x}, \underline{z}))$ [McM03, McM06].

Let L be a fragment (propositional, FO quantifier-free, etc.) of the language of a theory T.

Definition (Ordinary Interpolation)

- $\phi(\underline{x},\underline{y}) \vdash_T \phi'(\underline{x});$
- $\phi'(\underline{x}) \vdash_T \psi(\underline{x}, \underline{z}).$
- Every pair of *L*-formulae (ϕ, ψ) has an ordinary interpolant $\implies T$ admits *(L)-ordinary (Craig) interpolation* [Cra57].
- **Reverse ordinary interpolant** for a pair (ϕ, ψ) : ordinary interpolant for the pair $(\phi(\underline{x}, \underline{y}), \neg \psi(\underline{x}, \underline{z}))$ [McM03, McM06].
 - In this case, φ ∧ ψ is *T*-inconsistent and a reverse interpolant φ'(<u>x</u>) is s.t. φ ⊢_T φ' and φ' ∧ ψ is *T*-inconsistent.

Let L be a fragment (propositional, FO quantifier-free, etc.) of the language of a theory T.

Definition (Uniform Interpolation)

- $\phi(\underline{x},\underline{y}) \vdash_T \phi'(\underline{x});$
- for any further *L*-formula $\psi(\underline{x}, \underline{z})$ s.t. $\phi(\underline{x}, \underline{y}) \vdash_T \psi(\underline{x}, \underline{z})$, we have $\phi'(\underline{x}) \vdash_T \psi(\underline{x}, \underline{z})$.

Let L be a fragment (propositional, FO quantifier-free, etc.) of the language of a theory T.

Definition (Uniform Interpolation)

- $\phi(\underline{x},\underline{y}) \vdash_T \phi'(\underline{x});$
- for any further *L*-formula $\psi(\underline{x}, \underline{z})$ s.t. $\phi(\underline{x}, \underline{y}) \vdash_T \psi(\underline{x}, \underline{z})$, we have $\phi'(\underline{x}) \vdash_T \psi(\underline{x}, \underline{z})$.
- Every *L*-formula $\phi(\underline{x}, \underline{y})$ has UI $\implies T$ admits *(L)-uniform interpolation*.

Let L be a fragment (propositional, FO quantifier-free, etc.) of the language of a theory T.

Definition (Uniform Interpolation)

- $\phi(\underline{x},\underline{y}) \vdash_T \phi'(\underline{x});$
- for any further *L*-formula $\psi(\underline{x}, \underline{z})$ s.t. $\phi(\underline{x}, \underline{y}) \vdash_T \psi(\underline{x}, \underline{z})$, we have $\phi'(\underline{x}) \vdash_T \psi(\underline{x}, \underline{z})$.
- Every *L*-formula $\phi(\underline{x}, \underline{y})$ has UI $\implies T$ admits *(L)-uniform interpolation*.
- Uls are ordinary interpolants as well, but **only** depend on ϕ and are *independent* of ψ .

Let L be a fragment (propositional, FO quantifier-free, etc.) of the language of a theory T.

Definition (Uniform Interpolation)

- $\phi(\underline{x},\underline{y}) \vdash_T \phi'(\underline{x});$
- for any further *L*-formula $\psi(\underline{x}, \underline{z})$ s.t. $\phi(\underline{x}, \underline{y}) \vdash_T \psi(\underline{x}, \underline{z})$, we have $\phi'(\underline{x}) \vdash_T \psi(\underline{x}, \underline{z})$.
- Every *L*-formula $\phi(\underline{x}, \underline{y})$ has UI $\implies T$ admits *(L)-uniform interpolation*.
- Uls are ordinary interpolants as well, but **only** depend on ϕ and are *independent* of ψ .
- If they exist, UIs are **unique**, up to *T*-equivalence.

Let L be a fragment (propositional, FO quantifier-free, etc.) of the language of a theory T.

Definition (Uniform Interpolation)

Given an *L*-formula ϕ , a *uniform interpolant (UI)* of ϕ (w.r.t. \underline{y}) is an *L*-formula $\phi'(\underline{x})$ where **only** the \underline{x} occur, and satisfying:

- $\phi(\underline{x},\underline{y}) \vdash_T \phi'(\underline{x});$
- for any further *L*-formula $\psi(\underline{x}, \underline{z})$ s.t. $\phi(\underline{x}, \underline{y}) \vdash_T \psi(\underline{x}, \underline{z})$, we have $\phi'(\underline{x}) \vdash_T \psi(\underline{x}, \underline{z})$.

Quantifier-free (ordinary) interpolants – quantifier-free uniform interpolants

Outline

Overview

- 3 QE in Model Completions and Uniform Interpolation
- Φ Computing UIs in ${\cal EUF}$
- 5 Computing Uls in Theory Combinations

6 Conclusions

Set of states S: formula φ(<u>x</u>), called state formula, where <u>x</u> is a tuple of variables, called state variables (e.g., registers of a RAM machine).

- Set of states S: formula φ(<u>x</u>), called state formula, where <u>x</u> is a tuple of variables, called state variables (e.g., registers of a RAM machine).
- The content of <u>x</u> determines the **global state** of the system.

- Set of states S: formula φ(<u>x</u>), called state formula, where <u>x</u> is a tuple of variables, called state variables (e.g., registers of a RAM machine).
- The content of <u>x</u> determines the **global state** of the system.
- Usually, state formulae are **quantifier-free**, where the \underline{x} occur free.

- Set of states S: formula φ(<u>x</u>), called state formula, where <u>x</u> is a tuple of variables, called state variables (e.g., registers of a RAM machine).
- The content of <u>x</u> determines the **global state** of the system.
- Usually, state formulae are **quantifier-free**, where the \underline{x} occur free.
- Initial states *Init*: state formula $I(\underline{x})$.

- Set of states S: formula $\phi(\underline{x})$, called state formula, where \underline{x} is a tuple of variables, called state variables (e.g., registers of a RAM machine).
- The content of <u>x</u> determines the **global state** of the system.
- Usually, state formulae are **quantifier-free**, where the \underline{x} occur free.
- Initial states *Init*: state formula $I(\underline{x})$.
- Transitions T: formula $\tau(\underline{x}, \underline{x}')$, connecting the current state \underline{x} to the next state \underline{x}' .

- Set of states S: formula φ(<u>x</u>), called state formula, where <u>x</u> is a tuple of variables, called state variables (e.g., registers of a RAM machine).
- The content of <u>x</u> determines the **global state** of the system.
- Usually, state formulae are **quantifier-free**, where the \underline{x} occur free.
- Initial states *Init*: state formula $I(\underline{x})$.
- Transitions T: formula $\tau(\underline{x}, \underline{x}')$, connecting the current state \underline{x} to the next state \underline{x}' .
- Symbolic Transition System $TS: \langle (\Sigma, T), I(\underline{x}), \tau(\underline{x}, \underline{x}') \rangle$, with (Σ, T) a FO theory (runs of the system live in their models)

- Set of states S: formula φ(<u>x</u>), called state formula, where <u>x</u> is a tuple of variables, called state variables (e.g., registers of a RAM machine).
- The content of <u>x</u> determines the **global state** of the system.
- Usually, state formulae are **quantifier-free**, where the \underline{x} occur free.
- Initial states *Init*: state formula $I(\underline{x})$.
- Transitions T: formula $\tau(\underline{x}, \underline{x}')$, connecting the current state \underline{x} to the next state \underline{x}' .
- Symbolic Transition System $TS: \langle (\Sigma, T), I(\underline{x}), \tau(\underline{x}, \underline{x}') \rangle$, with (Σ, T) a FO theory (runs of the system live in their models)
- If the \underline{x} range over an infinite domain, TS formalizes an **infinite-state system**.

Symbolic Model Checking

Safety Problem: is a set of **undesired states** $U(\underline{x})$ (state formula) *reachable* through the transitions $\tau(\underline{x}, \underline{x}')$ from a set of initial states $I(\underline{x})$?

$U(\underline{x})$ unsafe configurations

initial configurations

$U(\underline{x})$ unsafe configurations

Direct Image Computation

The key ingredient is to compute *iteratively* **Direct Images** of a state formula ϕ through transitions τ

$$Dir(\tau,\phi) :\equiv \exists \underline{x}(\phi(\underline{x}) \land \tau(\underline{x},\underline{x}'))$$

Direct Image Computation

The key ingredient is to *iteratively* compute **Direct Images** of a state formula ϕ through transitions τ

$$Dir(\tau,\phi) :\equiv \exists \underline{x}(\phi(\underline{x}) \land \tau(\underline{x},\underline{x}'))$$

$\exists \underline{x}(I(\underline{x}) \land \tau(\underline{x}, \underline{x}'))$

Direct Image Computation

The key ingredient is to *iteratively* compute **Direct Images** of a state formula ϕ through transitions τ

$$Dir(\tau,\phi) :\equiv \exists \underline{x}(\phi(\underline{x}) \land \tau(\underline{x},\underline{x}'))$$

configurations

$U(\underline{x})$ unsafe configurations

 $I(\underline{x})$ initial configurations

Preimage Computation

The key ingredient is to *iteratively* compute **Direct Images** of a state formula ϕ through transitions τ

$$Pre(\tau,\phi) :\equiv \exists \underline{x}'(\tau(\underline{x},\underline{x}') \land \phi(\underline{x}'))$$

Preimage Computation

The key ingredient is to *iteratively* compute **Direct Images** of a state formula ϕ through transitions τ

$$Pre(\tau,\phi) :\equiv \exists \underline{x}'(\tau(\underline{x},\underline{x}') \land \phi(\underline{x}'))$$

• State formulae: quantifier-free

- State formulae: quantifier-free
 - Example:

 $\phi(x_{\texttt{applicant}}) :\equiv User(x_{\texttt{applicant}}, John) \land x_{\texttt{applicant}} \neq \texttt{undef}$

- State formulae: quantifier-free
 - Example:

$$\phi(x_{\texttt{applicant}}) :\equiv User(x_{\texttt{applicant}}, John) \land x_{\texttt{applicant}} \neq \texttt{undef}$$

• Transition formulae may be (existentially) quantified formulae: e.g., a transition whose guard *queries* the content of a relational database.

- State formulae: quantifier-free
 - Example:

$$\phi(x_{\texttt{applicant}}) :\equiv User(x_{\texttt{applicant}}, John) \land x_{\texttt{applicant}} \neq \texttt{undef}$$

- Transition formulae may be (existentially) quantified formulae: e.g., a transition whose guard *queries* the content of a relational database.
 - Example:

$$\begin{split} \tau(x_{\texttt{applicant}}, x'_{\texttt{applicant}}) &:\equiv \exists \textit{uid}, \textit{name} \ (x_{\texttt{applicant}} = \texttt{undef} \\ & \land User(\textit{uid}, \textit{name}) \land x'_{\texttt{applicant}} = \textit{uid}) \end{split}$$

- State formulae: quantifier-free
 - Example:

$$\phi(x_{\texttt{applicant}}) :\equiv User(x_{\texttt{applicant}}, John) \land x_{\texttt{applicant}} \neq \texttt{undef}$$

- Transition formulae may be (existentially) quantified formulae: e.g., a transition whose guard *queries* the content of a relational database.
 - Example:

$$\begin{split} \tau(x_{\texttt{applicant}}, x'_{\texttt{applicant}}) &:\equiv \exists \textit{uid}, \textit{name} \ (x_{\texttt{applicant}} = \texttt{undef} \\ & \land User(\textit{uid}, \textit{name}) \land x'_{\texttt{applicant}} = \textit{uid}) \end{split}$$

• Transitions may introduce **new variables** wrt state variables \underline{x}

- State formulae: quantifier-free
 - Example:

$$\phi(x_{\texttt{applicant}}) :\equiv User(x_{\texttt{applicant}}, John) \land x_{\texttt{applicant}} \neq \texttt{undef}$$

- Transition formulae may be (existentially) quantified formulae: e.g., a transition whose guard *queries* the content of a relational database.
 - Example:

$$\tau(x_{\texttt{applicant}}, x'_{\texttt{applicant}}) :\equiv \exists uid, name (x_{\texttt{applicant}} = \texttt{undef} \\ \land User(uid, name) \land x'_{\texttt{applicant}} = uid)$$

- Transitions may introduce **new variables** wrt state variables \underline{x}
 - ► Example: uid and name new w.r.t. the state variable x_{applicant} ⇒ data values non-deterministacally taken from a DB.

• Forward and Backward Reachability compute sets of (reachable) states by computing (direct or pre-)images through transitions:

- Forward and Backward Reachability compute sets of (reachable) states by computing (direct or pre-)images through transitions:
 - **Images** introduce **quantifiers**, because of quantifiers in τ ;

- Forward and Backward Reachability compute sets of (reachable) states by computing (direct or pre-)images through transitions:
 - **Images** introduce **quantifiers**, because of quantifiers in τ ;
 - ► Images are sets of states, so they should be state formula ⇒ Images should be quantifier-free!

- Forward and Backward Reachability compute sets of (reachable) states by computing (direct or pre-)images through transitions:
 - **Images** introduce **quantifiers**, because of quantifiers in τ ;
 - ► Images are sets of states, so they should be state formula ⇒ Images should be quantifier-free!
- The problem of quantifiers affects the *effectiveness* of the search:

- Forward and Backward Reachability compute sets of (reachable) states by computing (direct or pre-)images through transitions:
 - **Images** introduce **quantifiers**, because of quantifiers in τ ;
 - ► Images are sets of states, so they should be state formula ⇒ Images should be quantifier-free!
- The problem of quantifiers affects the *effectiveness* of the search:
 - Loop invariant of the procedure: 'a set of states is described by a state formula'

- Forward and Backward Reachability compute sets of (reachable) states by computing (direct or pre-)images through transitions:
 - **Images** introduce **quantifiers**, because of quantifiers in τ ;
 - ► Images are sets of states, so they should be state formula ⇒ Images should be quantifier-free!
- The problem of quantifiers affects the *effectiveness* of the search:
 - Loop invariant of the procedure: 'a set of states is described by a state formula'
 - During the search, the tail of quantifiers can grow dramatically, affecting also termination and the performance!

- Forward and Backward Reachability compute sets of (reachable) states by computing (direct or pre-)images through transitions:
 - **Images** introduce **quantifiers**, because of quantifiers in τ ;
 - ► Images are sets of states, so they should be state formula ⇒ Images should be quantifier-free!
- The problem of quantifiers affects the *effectiveness* of the search:
 - Loop invariant of the procedure: 'a set of states is described by a state formula'
 - During the search, the tail of quantifiers can grow dramatically, affecting also termination and the performance!
- How to solve the **problem of quantifiers**?

- Forward and Backward Reachability compute sets of (reachable) states by computing (direct or pre-)images through transitions:
 - **Images** introduce **quantifiers**, because of quantifiers in τ ;
 - ► Images are sets of states, so they should be state formula ⇒ Images should be quantifier-free!
- The problem of quantifiers affects the *effectiveness* of the search:
 - Loop invariant of the procedure: 'a set of states is described by a state formula'
 - During the search, the tail of quantifiers can grow dramatically, affecting also termination and the performance!
- How to solve the problem of quantifiers?
 - Ordinary Interpolation [McM06]: over-approximation of reachable states!

- Forward and Backward Reachability compute sets of (reachable) states by computing (direct or pre-)images through transitions:
 - **Images** introduce **quantifiers**, because of quantifiers in τ ;
 - ► Images are sets of states, so they should be state formula ⇒ Images should be quantifier-free!
- The problem of quantifiers affects the *effectiveness* of the search:
 - Loop invariant of the procedure: 'a set of states is described by a state formula'
 - During the search, the tail of quantifiers can grow dramatically, affecting also termination and the performance!
- How to solve the **problem of quantifiers**?
 - Ordinary Interpolation [McM06]: over-approximation of reachable states!
 - Quantifier Elimination: computationally expensive, not available for generic first-order theories

By definition of (reverse) ordinary interpolant, there is a formula $Int(\underline{x}')$ (where only the common variables \underline{x}' occur), such that in T:

By definition of (reverse) ordinary interpolant, there is a formula $Int(\underline{x}')$ (where only the common variables \underline{x}' occur), such that in T:

By definition of (reverse) ordinary interpolant, there is a formula $Int(\underline{x}')$ (where only the common variables \underline{x}' occur), such that in T:

By definition of (reverse) ordinary interpolant, there is a formula $Int(\underline{x}')$ (where only the common variables \underline{x}' occur), such that in T:

 $A \rightarrow Int \text{ and } Int \wedge B \models \bot$

First Property

 $(I(\underline{x}) \land \tau(\underline{x}, \underline{x}')) \to (Int(\underline{x}'))_{\underline{x}'}$

By definition of (reverse) ordinary interpolant, there is a formula $Int(\underline{x}')$ (where only the common variables \underline{x}' occur), such that in T:

 $A \rightarrow Int \text{ and } Int \wedge B \models \bot$

Second Property $Int(\underline{x}') \land (\tau(\underline{x}', \underline{x}'') \land U(\underline{x}'')) \models \bot$

By definition of (reverse) ordinary interpolant, there is a formula $Int(\underline{x}')$ (where only the common variables \underline{x}' occur), such that in T:

By definition of (reverse) ordinary interpolant, there is a formula $Int(\underline{x}')$ (where only the common variables \underline{x}' occur), such that in T:

(Reverse) Ordinary Interpolation

By definition of (reverse) ordinary interpolant, there is a formula $Int(\underline{x}')$ (where only the common variables \underline{x}' occur), such that in T:

 $A \rightarrow Int \text{ and } Int \wedge B \models \bot$

(Reverse) Ordinary Interpolation

(Reverse) Ordinary Interpolation

$\exists \underline{x}'(\tau(\underline{x},\underline{x}') \land U(\underline{x}'))$

(Reverse) Interpolation: Backward

First Step: exact preimages

First Step: over-approximated preimages

Second Step: exact preimages

The 'new' set of final states is given by Int

Second Step: over-approximated preimages

$\exists \underline{x}', \underline{x}'', \underline{x}'''(\tau(\underline{x}, \underline{x}') \land \tau(\underline{x}', \underline{x}') \land \tau(\underline{x}'', \underline{x}'') \land U(\underline{x}'''))$

Third Step: exact preimages. Fixpoint reached! The system is SAFE

Third Step: over-approximated preimages. Initial states intersected!

Spurious Trace! Refinement needed.

Every interesting T has QE?

Modeling and verifying data-aware processes ⇒ combination of different theories for defining the (Σ, T) of their TS, such as:
 (i) relational theories with key dependencies for the database;
 (ii) datatypes for elements from value domains (e.g., numbers).

- Modeling and verifying data-aware processes ⇒ combination of different theories for defining the (Σ, T) of their TS, such as:
 (i) relational theories with key dependencies for the database;
 (ii) datatypes for elements from value domains (e.g., numbers).
- Example: Simple Artifact Systems (SAS) [CGG⁺20]

- Modeling and verifying data-aware processes ⇒ combination of different theories for defining the (Σ, T) of their TS, such as:
 (i) relational theories with key dependencies for the database;
 (ii) datatypes for elements from value domains (e.g., numbers).
- Example: Simple Artifact Systems (SAS) [CGG⁺20]

• States: $\phi(\underline{x})$ (quantifier-free)

- Modeling and verifying data-aware processes ⇒ combination of different theories for defining the (Σ, T) of their TS, such as:
 (i) relational theories with key dependencies for the database;
 (ii) datatypes for elements from value domains (e.g., numbers).
- Example: Simple Artifact Systems (SAS) [CGG⁺20]
 - States: $\phi(\underline{x})$ (quantifier-free)
 - $\blacktriangleright \text{ Tr: } \tau(\underline{x},\underline{x}') \equiv \exists \underline{d}, \underline{i}, \underline{s}(G(\underline{x},\underline{d},\underline{i},\underline{s}) \land U(\underline{x},\underline{x}',\underline{d},\underline{i},\underline{s})) \text{ (existential)}$

- Modeling and verifying data-aware processes ⇒ combination of different theories for defining the (Σ, T) of their TS, such as:
 (i) relational theories with key dependencies for the database;
 (ii) datatypes for elements from value domains (e.g., numbers).
- Example: Simple Artifact Systems (SAS) [CGG⁺20]
 - States: $\phi(\underline{x})$ (quantifier-free)
 - Tr: $\tau(\underline{x}, \underline{x}') \equiv \exists \underline{d}, \underline{i}, \underline{s}(G(\underline{x}, \underline{d}, \underline{i}, \underline{s}) \land U(\underline{x}, \underline{x}', \underline{d}, \underline{i}, \underline{s}))$ (existential)
 - <u>d</u>: Persistent Data from DB;

- Modeling and verifying data-aware processes ⇒ combination of different theories for defining the (Σ, T) of their TS, such as:
 (i) relational theories with key dependencies for the database;
 (ii) datatypes for elements from value domains (e.g., numbers).
- Example: Simple Artifact Systems (SAS) [CGG⁺20]
 - States: $\phi(\underline{x})$ (quantifier-free)
 - Tr: $\tau(\underline{x}, \underline{x}') \equiv \exists \underline{d}, \underline{i}, \underline{s}(G(\underline{x}, \underline{d}, \underline{i}, \underline{s}) \land U(\underline{x}, \underline{x}', \underline{d}, \underline{i}, \underline{s}))$ (existential)
 - <u>d</u>: Persistent Data from DB;
 - *i*: elements from *arithmetical domains* (integers or reals).

- Modeling and verifying data-aware processes ⇒ combination of different theories for defining the (Σ, T) of their TS, such as:
 (i) relational theories with key dependencies for the database;
 (ii) datatypes for elements from value domains (e.g., numbers).
- Example: Simple Artifact Systems (SAS) [CGG⁺20]
 - States: $\phi(\underline{x})$ (quantifier-free)
 - $\blacktriangleright \text{ Tr: } \tau(\underline{x},\underline{x}') \equiv \exists \underline{d}, \underline{i}, \underline{s}(G(\underline{x},\underline{d},\underline{i},\underline{s}) \land U(\underline{x},\underline{x}',\underline{d},\underline{i},\underline{s})) \text{ (existential)}$
 - <u>d</u>: Persistent Data from DB;
 - ▶ *i*: elements from *arithmetical domains* (integers or reals).
 - <u>s</u>: values of string type.

• Persistent Data from DB

- Persistent Data from DB
 - *EUF* with multiple sorts, unary functions and *n*-ary relations (algebraic formalization of relational DBs with key dependencies).

- Persistent Data from DB
 - *EUF* with multiple sorts, unary functions and *n*-ary relations (algebraic formalization of relational DBs with key dependencies).
 - ► This theory *does not admit QE* (but it admits a *model completion*).

- Persistent Data from DB
 - *EUF* with multiple sorts, unary functions and *n*-ary relations (algebraic formalization of relational DBs with key dependencies).
 - This theory does not admit QE (but it admits a model completion).
- Values of string type

- Persistent Data from DB
 - *EUF* with multiple sorts, unary functions and *n*-ary relations (algebraic formalization of relational DBs with key dependencies).
 - ► This theory *does not admit QE* (but it admits a *model completion*).
- Values of string type
 - ► Again, *EUF* with multiple sorts (formalization of datatypes like strings).

- Persistent Data from DB
 - *EUF* with multiple sorts, unary functions and *n*-ary relations (algebraic formalization of relational DBs with key dependencies).
 - ► This theory *does not admit QE* (but it admits a *model completion*).
- Values of string type
 - ► Again, *EUF* with multiple sorts (formalization of datatypes like strings).
 - *EUF* with multiple sorts *does not admit QE* (but has a model completion).

- Persistent Data from DB
 - *EUF* with multiple sorts, unary functions and *n*-ary relations (algebraic formalization of relational DBs with key dependencies).
 - ► This theory *does not admit QE* (but it admits a *model completion*).
- Values of string type
 - ► Again, *EUF* with multiple sorts (formalization of datatypes like strings).
 - *EUF* with multiple sorts *does not admit QE* (but has a model completion).
- Arithmetical values

- Persistent Data from DB
 - *EUF* with multiple sorts, unary functions and *n*-ary relations (algebraic formalization of relational DBs with key dependencies).
 - ► This theory *does not admit QE* (but it admits a *model completion*).
- Values of string type
 - ► Again, *EUF* with multiple sorts (formalization of datatypes like strings).
 - *EUF* with multiple sorts *does not admit QE* (but has a model completion).
- Arithmetical values
 - \mathcal{LIA} and \mathcal{LRA} (integer and real numbers).

- Persistent Data from DB
 - *EUF* with multiple sorts, unary functions and *n*-ary relations (algebraic formalization of relational DBs with key dependencies).
 - This theory does not admit QE (but it admits a model completion).
- Values of string type
 - ► Again, *EUF* with multiple sorts (formalization of datatypes like strings).
 - *EUF* with multiple sorts *does not admit QE* (but has a model completion).
- Arithmetical values
 - \mathcal{LIA} and \mathcal{LRA} (integer and real numbers).
 - ► These theories admit QE (e.g., Cooper's algorithm for *LIA*).

- Persistent Data from DB
 - *EUF* with multiple sorts, unary functions and *n*-ary relations (algebraic formalization of relational DBs with key dependencies).
 - This theory does not admit QE (but it admits a model completion).
- Values of string type
 - ► Again, *EUF* with multiple sorts (formalization of datatypes like strings).
 - *EUF* with multiple sorts *does not admit QE* (but has a model completion).
- Arithmetical values
 - \mathcal{LIA} and \mathcal{LRA} (integer and real numbers).
 - ► These theories admit QE (e.g., Cooper's algorithm for *LIA*).
- The combination of all these theories, clearly, does not admit QE

Theories used in the verification of data-aware processes do not admit QE.

Theories used in the verification of data-aware processes do not admit QE.

What to do when QE is not available in T?

Theories used in the verification of data-aware processes do not admit QE.

Infinite-state model checking ⇒ sets of (*reachable*) states and transitions represented symbolically.

- Infinite-state model checking ⇒ sets of (*reachable*) states and transitions represented symbolically.
- *Precise* computations of the set of reachable states through Quantifier Elimination (QE).

- Infinite-state model checking ⇒ sets of (*reachable*) states and transitions represented symbolically.
- *Precise* computations of the set of reachable states through Quantifier Elimination (QE).
- Usually, QE is **computationally intractable** (for instance, arithmetics), or not available at all (DB theories).

- Infinite-state model checking ⇒ sets of (*reachable*) states and transitions represented symbolically.
- *Precise* computations of the set of reachable states through Quantifier Elimination (QE).
- Usually, QE is **computationally intractable** (for instance, arithmetics), or not available at all (DB theories).
- Methods for **symbol elimination** [KV09, JM09] (e.g., *ordinary interpolation*):

- Infinite-state model checking ⇒ sets of (*reachable*) states and transitions represented symbolically.
- *Precise* computations of the set of reachable states through Quantifier Elimination (QE).
- Usually, QE is **computationally intractable** (for instance, arithmetics), or not available at all (DB theories).
- Methods for **symbol elimination** [KV09, JM09] (e.g., *ordinary interpolation*):
 - quite efficient;

- Infinite-state model checking ⇒ sets of (*reachable*) states and transitions represented symbolically.
- *Precise* computations of the set of reachable states through Quantifier Elimination (QE).
- Usually, QE is **computationally intractable** (for instance, arithmetics), or not available at all (DB theories).
- Methods for **symbol elimination** [KV09, JM09] (e.g., *ordinary interpolation*):
 - quite efficient;
 - over-approximate states;

- Infinite-state model checking ⇒ sets of (*reachable*) states and transitions represented symbolically.
- *Precise* computations of the set of reachable states through Quantifier Elimination (QE).
- Usually, QE is **computationally intractable** (for instance, arithmetics), or not available at all (DB theories).
- Methods for **symbol elimination** [KV09, JM09] (e.g., *ordinary interpolation*):
 - quite efficient;
 - over-approximate states;
 - the computation is not exact.

- Infinite-state model checking ⇒ sets of (*reachable*) states and transitions represented symbolically.
- *Precise* computations of the set of reachable states through Quantifier Elimination (QE).
- Usually, QE is **computationally intractable** (for instance, arithmetics), or not available at all (DB theories).
- Methods for **symbol elimination** [KV09, JM09] (e.g., *ordinary interpolation*):
 - quite efficient;
 - over-approximate states;
 - the computation is not exact.
- QE in richer theories (model completions) ⇔ uniform interpolants (or, covers [GM08]): tractable in significant cases [CGG⁺21].

Outline

Overview

3 QE in Model Completions and Uniform Interpolation

Φ Computing Uls in ${\cal EUF}$

5 Computing Uls in Theory Combinations

6 Conclusions

• Eliminating quantifiers ⇔ eliminating *existential* quantifiers from primitive formulae.

- Eliminating quantifiers ⇔ eliminating *existential* quantifiers from primitive formulae.
- Logical counterpart of finding *witnesses*, i.e., *solutions*, to systems of equations and/or disequalities expressed in logical form.

- Eliminating quantifiers ⇔ eliminating *existential* quantifiers from primitive formulae.
- Logical counterpart of finding *witnesses*, i.e., *solutions*, to systems of equations and/or disequalities expressed in logical form.
- Model-theoretic algebra [Rob63]: powerful setting for formulating the problem in algebraic terms, exploiting tools from model theory.

- Eliminating quantifiers ⇔ eliminating *existential* quantifiers from primitive formulae.
- Logical counterpart of finding *witnesses*, i.e., *solutions*, to systems of equations and/or disequalities expressed in logical form.
- Model-theoretic algebra [Rob63]: powerful setting for formulating the problem in algebraic terms, exploiting tools from model theory.
- **Model completions**: theories whose models *satisfy* all formulae that are *satisfiable in extended structures*.

• A quantifier-free formula with *parameters* in a model M is **solvable** if there is an extension M' of M where the formula is satisfied.

- A quantifier-free formula with *parameters* in a model M is **solvable** if there is an extension M' of M where the formula is satisfied.
- For instance, some *equations* do not have solutions in real numbers, but do have in the **extension** of complex numbers.

- A quantifier-free formula with *parameters* in a model M is **solvable** if there is an extension M' of M where the formula is satisfied.
- For instance, some *equations* do not have solutions in real numbers, but do have in the **extension** of complex numbers.
- A model *M* is **existentially closed** if *any solvable* quantifier-free formula already has a **solution** in *M* itself.

- A quantifier-free formula with *parameters* in a model M is **solvable** if there is an extension M' of M where the formula is satisfied.
- For instance, some *equations* do not have solutions in real numbers, but do have in the **extension** of complex numbers.
- A model *M* is **existentially closed** if *any solvable* quantifier-free formula already has a **solution** in *M* itself.
- In significant cases, existentially closed models of T are exactly the models of another FO theory T*: the **model completion** of T.

Definition (Existentially closed model)

A model \mathcal{M} of a Σ -theory T is said to be **existentially closed** for T if, for every extension \mathcal{N} of \mathcal{M} such that \mathcal{N} is a model of T, every existential $\Sigma^{|\mathcal{M}|}$ -sentence that holds in \mathcal{N} holds also in \mathcal{M} .

Models of T

Definition (Existentially closed model)

A model \mathcal{M} of a Σ -theory T is said to be **existentially closed** for T if, for every extension \mathcal{N} of \mathcal{M} such that \mathcal{N} is a model of T, every existential $\Sigma^{|\mathcal{M}|}$ -sentence that holds in \mathcal{N} holds also in \mathcal{M} .

Models of T

Definition (Existentially closed model)

A model \mathcal{M} of a Σ -theory T is said to be **existentially closed** for T if, for every extension \mathcal{N} of \mathcal{M} such that \mathcal{N} is a model of T, every existential $\Sigma^{|\mathcal{M}|}$ -sentence that holds in \mathcal{N} holds also in \mathcal{M} .

Models of T

Model Completion

Definition (Model Completion [CK90])

Let T be a universal Σ -theory and let $T^* \supseteq T$ be a further Σ -theory; we say that T^* is a model completion of T iff: (C.i) every model of T can be embedded into a model of T^* ; .(C.ii) T^* admits Quantifier Elimination.

Model Completion

Definition (Model Completion [CK90])

Let T be a universal Σ -theory and let $T^* \supseteq T$ be a further Σ -theory; we say that T^* is a model completion of T iff: (C.i) every model of T can be embedded into a model of T^* ; .(C.ii) T^* admits Quantifier Elimination.

Remark

- The models of T^* are exactly all the existentially closed models for T.
- T* admits QE even when T does not!

Model Completion

Definition (Model Completion [CK90])

Let T be a universal Σ -theory and let $T^* \supseteq T$ be a further Σ -theory; we say that T^* is a model completion of T iff: (C.i) every model of T can be embedded into a model of T^* ; .(C.ii) T^* admits Quantifier Elimination.

Remark

- The models of T^* are exactly all the existentially closed models for T.
- T* admits QE even when T does not!

The model completion of a theory, *if it exists*, is **unique**.

Consider the algebraic field \mathbb{R} of real numbers, and the **algebraically** closed field \mathbb{C} of complex numbers.

Consider the algebraic field \mathbb{R} of real numbers, and the **algebraically** closed field \mathbb{C} of complex numbers.

• $\mathbb{R} \hookrightarrow \mathbb{C}$, i.e., \mathbb{C} is an extension of \mathbb{R} (embedding) (C.ii)

Consider the algebraic field \mathbb{R} of real numbers, and the **algebraically** closed field \mathbb{C} of complex numbers.

- $\mathbb{R} \hookrightarrow \mathbb{C}$, i.e., \mathbb{C} is an extension of \mathbb{R} (embedding) (C.ii)
- $x^2 + 1 = 0$ has no solution in \mathbb{R} , whereas in \mathbb{C} there is an element i such that $i^2 + 1 = 0$;

Consider the algebraic field \mathbb{R} of real numbers, and the **algebraically** closed field \mathbb{C} of complex numbers.

- $\mathbb{R} \hookrightarrow \mathbb{C}$, i.e., \mathbb{C} is an extension of \mathbb{R} (embedding) (C.ii)
- $x^2 + 1 = 0$ has no solution in \mathbb{R} , whereas in \mathbb{C} there is an element i such that $i^2 + 1 = 0$;

Notice: the solution of an equation is an existential formula in the signature of algebraic fields!

Consider the algebraic field \mathbb{R} of real numbers, and the **algebraically** closed field \mathbb{C} of complex numbers.

- $\mathbb{R} \hookrightarrow \mathbb{C}$, i.e., \mathbb{C} is an extension of \mathbb{R} (embedding) (C.ii)
- $x^2 + 1 = 0$ has no solution in \mathbb{R} , whereas in \mathbb{C} there is an element i such that $i^2 + 1 = 0$;

Notice: the solution of an equation is an existential formula in the signature of algebraic fields!

Consider the algebraic field \mathbb{R} of real numbers, and the **algebraically** closed field \mathbb{C} of complex numbers.

- $\mathbb{R} \hookrightarrow \mathbb{C}$, i.e., \mathbb{C} is an extension of \mathbb{R} (embedding) (C.ii)
- $x^2 + 1 = 0$ has no solution in \mathbb{R} , whereas in \mathbb{C} there is an element i such that $i^2 + 1 = 0$;

Notice: the solution of an equation is an existential formula in the signature of algebraic fields!

$$\mathbb{C} \qquad i: i^2 + 1 = 0 \quad !!!$$

$$\mathbb{R} \qquad \exists x(x^2 + 1 = 0) \; ???$$

• \mathbb{C} is an existentially closed model, whereas \mathbb{R} is not.

Consider the algebraic field \mathbb{R} of real numbers, and the **algebraically** closed field \mathbb{C} of complex numbers.

- $\mathbb{R} \hookrightarrow \mathbb{C}$, i.e., \mathbb{C} is an extension of \mathbb{R} (embedding) (C.ii)
- $x^2 + 1 = 0$ has no solution in \mathbb{R} , whereas in \mathbb{C} there is an element i such that $i^2 + 1 = 0$;

Notice: the solution of an equation is an existential formula in the signature of algebraic fields!

$$\mathbb{C} \qquad i: i^2 + 1 = 0 \quad !!!$$

$$\int \\ \mathbb{R} \qquad \exists x(x^2 + 1 = 0) \; ???$$

- $\mathbb C$ is an existentially closed model, whereas $\mathbb R$ is not.
- The existential quantifier can be eliminated in the theory of *algebraically closed* fields, but *not* in the theory of fields! (C.i)

Consider the algebraic field \mathbb{R} of real numbers, and the **algebraically** closed field \mathbb{C} of complex numbers.

- $\mathbb{R} \hookrightarrow \mathbb{C}$, i.e., \mathbb{C} is an extension of \mathbb{R} (embedding) (C.ii)
- $x^2 + 1 = 0$ has no solution in \mathbb{R} , whereas in \mathbb{C} there is an element i such that $i^2 + 1 = 0$;

Notice: the solution of an equation is an existential formula in the signature of algebraic fields!

- $\mathbb C$ is an existentially closed model, whereas $\mathbb R$ is not.
- The existential quantifier can be eliminated in the theory of *algebraically closed* fields, but *not* in the theory of fields! (C.i)
- Algebraically closed fields are the model completion of algebraic fields

Exact Preimages? Toward Model Completions

• Theories used in the verification of data-aware processes (DB theories) do not admit QE.

Exact Preimages? Toward Model Completions

- Theories used in the verification of data-aware processes (DB theories) do not admit QE.
- How to handle the quantifiers there?

Exact Preimages? Toward Model Completions

- Theories used in the verification of data-aware processes (DB theories) do not admit QE.
- How to handle the quantifiers there?
- Is it possible to enrich T in a 'conservative way' so as to get computationally tractable QE?

Solution: Model Completions

The answer is **YES**. Indeed, for a DB theory (Σ, T) , there exists a **'minimal richer theory'** (Σ, T^*) that extends T and s.t. T^* does have QE. T^* is exactly the **model completion** of T.

Solution: Model Completions

The answer is **YES**. Indeed, for a DB theory (Σ, T) , there exists a **'minimal richer theory'** (Σ, T^*) that extends T and s.t. T^* does have QE. T^* is exactly the **model completion** of T.

• An **unsafe trace** in a model of T lifted into a model of T^* (C.i). Here, we eliminate the quantifiers (C.ii).
Solution: Model Completions

The answer is **YES**. Indeed, for a DB theory (Σ, T) , there exists a **'minimal richer theory'** (Σ, T^*) that extends T and s.t. T^* does have QE. T^* is exactly the **model completion** of T.

- An **unsafe trace** in a model of T lifted into a model of T^* (C.i). Here, we eliminate the quantifiers (C.ii).
- An unsafe trace in a model of T^* is an unsafe trace in T ($T \subseteq T^*$).

Solution: Model Completions

The answer is **YES**. Indeed, for a DB theory (Σ, T) , there exists a **'minimal richer theory'** (Σ, T^*) that extends T and s.t. T^* does have QE. T^* is exactly the **model completion** of T.

- An **unsafe trace** in a model of T lifted into a model of T^* (C.i). Here, we eliminate the quantifiers (C.ii).
- An unsafe trace in a model of T^* is an unsafe trace in T ($T \subseteq T^*$).
- Hence, detecting **safety** in T or in T^* are equivalent problems!

• Theories used in the verification of data-aware processes do not admit QE, but admit model completions!

- Theories used in the verification of data-aware processes do not admit QE, but admit model completions!
- For instance, **DB** theories such as combinations of $\mathcal{EUF}, \mathcal{LIA}, \mathcal{LRA}$ have model completions.

• Theories used in the verification of data-aware processes do not admit QE, but admit model completions!

- Theories used in the verification of data-aware processes do not admit QE, but admit model completions!
- For instance, **DB** theories such as combinations of $\mathcal{EUF}, \mathcal{LIA}, \mathcal{LRA}$ have model completions.

• The QE is performed in T*, and not in T!

- The QE is performed in T*, and not in T!
- Exact Preimages!!! No refinement needed.

Fix a theory T and an existential formula $\exists \underline{e} \, \phi(\underline{e},y).$

• A (qf) formula $\psi(\underline{y})$ is a *T*-cover of $\exists \underline{e} \phi(\underline{e}, \underline{y})$ iff

Fix a theory T and an existential formula $\exists \underline{e} \, \phi(\underline{e},y).$

• A (qf) formula $\psi(\underline{y})$ is a *T*-cover of $\exists \underline{e} \phi(\underline{e}, \underline{y})$ iff (i) $\psi(\underline{y}) \in Res(\exists \underline{e} \phi) := \{\theta(\underline{y}, \underline{z}) \mid T \models \phi(\underline{e}, \underline{y}) \rightarrow \theta(\underline{y}, \underline{z})\},\$

Fix a theory T and an existential formula $\exists \underline{e} \, \phi(\underline{e}, \underline{y}).$

• A (qf) formula $\psi(\underline{y})$ is a *T*-cover of $\exists \underline{e} \phi(\underline{e}, \underline{y})$ iff (i) $\psi(\underline{y}) \in Res(\exists \underline{e} \phi) := \{\theta(\underline{y}, \underline{z}) \mid T \models \phi(\underline{e}, \underline{y}) \rightarrow \theta(\underline{y}, \underline{z})\},$ (ii) $\psi(\underline{y})$ implies (modulo *T*) all the formulae in $Res(\exists \underline{e} \phi)$.

Fix a theory T and an existential formula $\exists \underline{e} \, \phi(\underline{e}, \underline{y}).$

- A (qf) formula $\psi(\underline{y})$ is a *T*-cover of $\exists \underline{e} \phi(\underline{e}, \underline{y})$ iff (i) $\psi(\underline{y}) \in Res(\exists \underline{e} \phi) := \{\theta(\underline{y}, \underline{z}) \mid T \models \phi(\underline{e}, \underline{y}) \rightarrow \theta(\underline{y}, \underline{z})\},$ (ii) $\psi(y)$ implies (modulo *T*) all the formulae in $Res(\exists \underline{e} \phi)$.
- T-covers and T-quantifier-free UIs are the same notion.

Fix a theory T and an existential formula $\exists \underline{e} \, \phi(\underline{e}, \underline{y}).$

- A (qf) formula $\psi(\underline{y})$ is a *T*-cover of $\exists \underline{e} \phi(\underline{e}, \underline{y})$ iff (i) $\psi(\underline{y}) \in Res(\exists \underline{e} \phi) := \{\theta(\underline{y}, \underline{z}) \mid T \models \phi(\underline{e}, \underline{y}) \rightarrow \theta(\underline{y}, \underline{z})\},$ (ii) $\psi(y)$ implies (modulo *T*) all the formulae in $Res(\exists \underline{e} \phi)$.
- T-covers and T-quantifier-free UIs are the same notion.
- Intuitively, it is the strongest formula implied by $\exists \underline{e} \phi(\underline{e}, \underline{y})$.

Fix a theory T and an existential formula $\exists \underline{e} \, \phi(\underline{e}, \underline{y}).$

• A (qf) formula $\psi(\underline{y})$ is a *T*-cover of $\exists \underline{e} \phi(\underline{e}, \underline{y})$ iff (i) $\psi(\underline{y}) \in Res(\exists \underline{e} \phi) := \{\theta(\underline{y}, \underline{z}) \mid T \models \phi(\underline{e}, \underline{y}) \rightarrow \theta(\underline{y}, \underline{z})\},$ (ii) $\psi(y)$ implies (modulo *T*) all the formulae in $Res(\exists \underline{e} \phi)$.

- T-covers and T-quantifier-free UIs are the same notion.
- Intuitively, it is the strongest formula implied by $\exists \underline{e} \phi(\underline{e}, \underline{y})$.
- In the cover $\psi(\underline{y}),$ the variables \underline{e} have been 'eliminated', in some sense.

Fix a theory T and an existential formula $\exists \underline{e} \, \phi(\underline{e}, \underline{y}).$

• A (qf) formula $\psi(\underline{y})$ is a *T*-cover of $\exists \underline{e} \phi(\underline{e}, \underline{y})$ iff (i) $\psi(\underline{y}) \in Res(\exists \underline{e} \phi) := \{\theta(\underline{y}, \underline{z}) \mid T \models \phi(\underline{e}, \underline{y}) \rightarrow \theta(\underline{y}, \underline{z})\},$ (ii) $\psi(\underline{y})$ implies (modulo *T*) all the formulae in $Res(\exists \underline{e} \phi)$.

- T-covers and T-quantifier-free UIs are the same notion.
- Intuitively, it is the strongest formula implied by $\exists \underline{e} \phi(\underline{e}, \underline{y})$.
- In the cover $\psi(\underline{y}),$ the variables \underline{e} have been 'eliminated', in some sense.
- But, in general, $\psi(\underline{y})$ does *not* imply $\exists \underline{e} \phi(\underline{e}, \underline{y})$. Hence, usually $\psi(\underline{y})$ and $\exists \underline{e} \phi(\underline{e}, \underline{y})$ are not *T*-equivalent.

Equivalence between **QE** in model completions and **Uniform** Interpolants (or Covers)

Equivalence between **QE** in model completions and **Uniform** Interpolants (or Covers)

Theorem (UIs and QE [CGG⁺21])

Let T be a universal theory. Then, T has a model completion T^* iff T has uniform quantifier-free interpolation. T^* is axiomatized by the infinitely many sentences $\forall \underline{y} (\psi(\underline{y}) \rightarrow \exists \underline{e} \phi(\underline{e}, \underline{y}))$, where $\exists \underline{e} \phi(\underline{e}, \underline{y})$ is a primitive formula and ψ is a **UI** of it.

Equivalence between **QE** in model completions and **Uniform** Interpolants (or Covers)

Theorem (UIs and QE [CGG⁺21])

Let T be a universal theory. Then, T has a model completion T^* iff T has uniform quantifier-free interpolation. T^* is axiomatized by the infinitely many sentences $\forall \underline{y} (\psi(\underline{y}) \rightarrow \exists \underline{e} \phi(\underline{e}, \underline{y}))$, where $\exists \underline{e} \phi(\underline{e}, \underline{y})$ is a primitive formula and ψ is a **UI** of it.

Remark

- In T^* , thanks to the axioms, the UI $\psi(\underline{y})$ implies $\exists \underline{e} \phi(\underline{e}, \underline{y})!$
- Hence, the UI $\psi(\underline{y})$ is a quantifier-free formula that is T^* -equivalent to the quantified formula $\exists \underline{e} \phi(\underline{e}, y)!$
- The UI $\psi(\underline{y})$ is the formula that eliminates the quantifiers from $\exists \underline{e} \phi(\underline{e}, \underline{y})!$

Theorem (UIs and QE [CGG⁺21])

Let T be a universal theory. Then, T has a model completion T^* iff T has uniform quantifier-free interpolation. T^* is axiomatized by the infinitely many sentences $\forall \underline{y} (\psi(\underline{y}) \rightarrow \exists \underline{e} \phi(\underline{e}, \underline{y}))$, where $\exists \underline{e} \phi(\underline{e}, \underline{y})$ is a primitive formula and ψ is a **UI** of it.

Thus, computing UIs in a theory T is equivalent to eliminating quantifiers in its model completion T^*

Model Completion = Existentially Closed Models

"Equations are **solvable** in extensions" [not a quote, but still evocative]

'light' QE = strong interpolation = Uls

Abraham Robinson

Outline

Overview

- 2 Motivation from Formal Verification
- 3 QE in Model Completions and Uniform Interpolation
- 4 Computing UIs in \mathcal{EUF}
 - 5 Computing UIs in Theory Combinations

6 Conclusions

• Quantifier Elimination in model completions: computing exact images when performing reachability, specifically for DB theories.

- Quantifier Elimination in model completions: computing exact images when performing reachability, specifically for DB theories.
- QE in model completions **equivalent** to computing UI in the original DB theory.

- Quantifier Elimination in model completions: computing exact images when performing reachability, specifically for DB theories.
- QE in model completions **equivalent** to computing UI in the original DB theory.
- $\mathcal{EUF} \implies$ formalize the basic theory of relational DBs with key dependencies.

- Quantifier Elimination in model completions: computing exact images when performing reachability, specifically for DB theories.
- QE in model completions **equivalent** to computing UI in the original DB theory.
- $\mathcal{EUF} \implies$ formalize the basic theory of relational DBs with key dependencies.
- Uls in *EUF* can be computed via a **constrained version of the Superposition Calculus** with suitable application strategies;

- Quantifier Elimination in model completions: computing exact images when performing reachability, specifically for DB theories.
- QE in model completions **equivalent** to computing UI in the original DB theory.
- $\mathcal{EUF} \implies$ formalize the basic theory of relational DBs with key dependencies.
- Uls in *EUF* can be computed via a **constrained version of the Superposition Calculus** with suitable application strategies;
- This computation is **tractable** for multi-sorted \mathcal{EUF} with unary functions and *n*-ary relations, making **UIs** crucial in *verification of data-aware processes*.

• Preprocessing: **Flattening** of terms/literals w.r.t. to <u>e</u> variables (<u>e</u>-flattening).

- Preprocessing: **Flattening** of terms/literals w.r.t. to <u>e</u> variables (<u>e</u>-flattening).
 - ► Example: f(t(y), e) = e, where f is a function symbol and t a generic term, is an e-flat literal.

- Preprocessing: **Flattening** of terms/literals w.r.t. to <u>e</u> variables (<u>e</u>-flattening).
 - ► Example: f(t(y), e) = e, where f is a function symbol and t a generic term, is an e-flat literal.
- Subroutine E(t, u): unification w.r.t. the variables \underline{y} (the \underline{e} variables are considered as constants). Example:

- Preprocessing: **Flattening** of terms/literals w.r.t. to <u>e</u> variables (<u>e</u>-flattening).
 - ► Example: f(t(y), e) = e, where f is a function symbol and t a generic term, is an <u>e</u>-flat literal.
- Subroutine E(t, u): unification w.r.t. the variables \underline{y} (the \underline{e} variables are considered as constants). Example:
 - E(t, u) fails if $t \equiv e_i$ and $u \equiv e_j$ for $i \neq j$;

- Preprocessing: **Flattening** of terms/literals w.r.t. to <u>e</u> variables (<u>e</u>-flattening).
 - ► Example: f(t(y), e) = e, where f is a function symbol and t a generic term, is an e-flat literal.
- Subroutine E(t, u): unification w.r.t. the variables \underline{y} (the \underline{e} variables are considered as constants). Example:
 - E(t, u) fails if $t \equiv e_i$ and $u \equiv e_j$ for $i \neq j$;
 - If $t := g(y_1)$ and $u := y_2$, we have $E(t, u) = \{t = u\}$;

- Preprocessing: **Flattening** of terms/literals w.r.t. to <u>e</u> variables (<u>e</u>-flattening).
 - ► Example: f(t(y), e) = e, where f is a function symbol and t a generic term, is an <u>e</u>-flat literal.
- Subroutine E(t, u): unification w.r.t. the variables \underline{y} (the \underline{e} variables are considered as constants). Example:
 - E(t, u) fails if $t \equiv e_i$ and $u \equiv e_j$ for $i \neq j$;
 - If $t := g(y_1)$ and $u := y_2$, we have $E(t, u) = \{t = u\}$;
 - If $t := f(e, y_1, y_2)$ and $u := f(e, y_3, y_4)$, the subroutine E(t, u) is defined *inductively*, i.e., $E(t, u) = E(y_1, y_3) \cup E(y_2, u_4)$, which, in turn, is equal to $E(t, u) = \{y_1 = y_3, y_2 = y_4\}$

Rules of the Constrained Superposition Calculus (constr-SC) for computing UIs in \mathcal{EUF} [CGG⁺21]:

Rules of the Constrained Superposition Calculus (constr-SC) for computing UIs in \mathcal{EUF} [CGG⁺21]:

Superposition Right (Constrained)	$\frac{l=r \parallel C \qquad s=t \parallel D}{s[r]_p=t \parallel C \cup D \cup E(s_{ p},l)}$	if $l > r$ and $s > t$
Superposition Left (Constrained)	$\frac{l=r \parallel C s \neq t \parallel D}{s[r]_p \neq t \parallel C \cup D \cup E(s_{\mid p}, l)}$	if $l > r$ and $s > t$
Reflection (Constrained)	$\frac{t \neq u \parallel C}{\perp \parallel C \cup E(t, u)}$	
Demodulation (Constrained)	$\frac{L \parallel C, \qquad l = r \parallel D}{L[r]_p \parallel C}$	$ \begin{array}{ll} \text{if} l>r,L_{\mid p}\equiv l\\ \text{and}\; C\supseteq D \end{array} $

Rules of the Constrained Superposition Calculus (constr-SC) for computing UIs in \mathcal{EUF} [CGG⁺21]:

Superposition Right (Constrained)	$\frac{l=r \parallel C \qquad s=t \parallel D}{s[r]_p=t \parallel C \cup D \cup E(s_{\mid p}, l)}$	if $l > r$ and $s > t$
Superposition Left (Constrained)	$\frac{l=r\parallel C s\neq t\parallel D}{s[r]_p\neq t\parallel C\cup D\cup E(s_{ p},l)}$	if $l > r$ and $s > t$
Reflection (Constrained)	$\frac{t \neq u \parallel C}{\perp \parallel C \cup E(t, u)}$	
Demodulation (Constrained)	$\frac{L \parallel C, \qquad l = r \parallel D}{L[r]_p \parallel C}$	$ \begin{array}{ll} \text{if} l>r,L_{\mid p}\equiv l\\ \text{and}\ C\supseteq D \end{array} $

• The calculus is equipped with appropriate reduction application strategies.

Rules of the Constrained Superposition Calculus (constr-SC) for computing UIs in \mathcal{EUF} [CGG⁺21]:

$\frac{l=r \parallel C}{s[r]_p = t \parallel C \cup D \cup E(s_{\mid p}, l)}$	if $l > r$ and $s > t$
$\frac{l=r\parallel C \qquad s\neq t\parallel D}{s[r]_p\neq t\parallel C\cup D\cup E(s_{ p},l)}$	if $l > r$ and $s > t$
$\frac{t \neq u \parallel C}{\perp \parallel C \cup E(t, u)}$	
$\frac{L \parallel C, l = r \parallel D}{L[r]_p \parallel C}$	$ \begin{array}{ll} \text{if} l>r,L_{\mid p}\equiv l\\ \text{and}\ C\supseteq D \end{array} $
	$\frac{l=r \parallel C \qquad s=t \parallel D}{s[r]_p = t \parallel C \cup D \cup E(s_{\mid p}, l)}$ $\frac{l=r \parallel C \qquad s \neq t \parallel D}{s[r]_p \neq t \parallel C \cup D \cup E(s_{\mid p}, l)}$ $\frac{t \neq u \parallel C}{\perp \parallel C \cup E(t, u)}$ $\frac{L \parallel C, \qquad l=r \parallel D}{L[r]_p \parallel C}$

- The calculus is equipped with appropriate reduction application strategies.
- Each rule applies only if the subroutine E does not fail.
The <u>e</u>-flattening is needed for termination, but *not* sufficient: infinitely many \underline{e} -flat terms in principle generated during saturation.

The <u>e</u>-flattening is needed for termination, but *not* sufficient: infinitely many <u>e</u>-flat terms in principle generated during saturation.

Proposition (Termination [CGG⁺21])

Thanks to the **application strategy**, the saturation of the initial set of \underline{e} -flat constrained literals always terminates after finitely many steps.

The <u>e</u>-flattening is needed for termination, but *not* sufficient: infinitely many <u>e</u>-flat terms in principle generated during saturation.

Proposition (Termination [CGG⁺21])

Thanks to the **application strategy**, the saturation of the initial set of \underline{e} -flat constrained literals always terminates after finitely many steps.

Theorem (Correctness [CGG⁺21])

If **constr-SC** takes as input the primitive \underline{e} -flat formula $\exists \underline{e} \phi(\underline{e}, \underline{y})$, then it gives as output the qf formula $\psi(\underline{y})$, which is a **(qf) uniform interpolant** of $\exists \underline{e} \phi(\underline{e}, \underline{y})$.

The <u>e</u>-flattening is needed for termination, but *not* sufficient: infinitely many <u>e</u>-flat terms in principle generated during saturation.

Proposition (Termination [CGG⁺21])

Thanks to the **application strategy**, the saturation of the initial set of \underline{e} -flat constrained literals always terminates after finitely many steps.

Theorem (Correctness [CGG⁺21])

If **constr-SC** takes as input the primitive <u>e</u>-flat formula $\exists \underline{e} \phi(\underline{e}, \underline{y})$, then it gives as output the qf formula $\psi(\underline{y})$, which is a **(qf) uniform interpolant** of $\exists \underline{e} \phi(\underline{e}, \underline{y})$.

DB theory \mathcal{EUF} with multiple sorts, unary functions and *n*-ary relations: Uls in polynomial time (with a quadratic bound).

Outline

Overview

- 2 Motivation from Formal Verification
- 3 QE in Model Completions and Uniform Interpolation
- Φ Computing Uls in ${\cal EUF}$
- 5 Computing UIs in Theory Combinations

6 Conclusions

 Verification of data-aware processes requires combination of different theories for formalizing the DB (e.g., EUF, LIA, LRA).

- Verification of data-aware processes requires combination of different theories for formalizing the DB (e.g., EUF, LIA, LRA).
- Important question: is it possible (and, if so, under which conditions) to transfer UIs from two theories T₁, T₂ to the theory combination T₁ ∪ T₂?

- Verification of data-aware processes requires combination of different theories for formalizing the DB (e.g., *EUF*, *LIA*, *LRA*).
- Important question: is it possible (and, if so, under which conditions) to transfer UIs from two theories T₁, T₂ to the theory combination T₁ ∪ T₂?
- For disjoint-signature convex theories: **Yes**, under the same hypothesis for the transfer of *ordinary interpolation* the **equality interpolating condition** [YM05].

- Verification of data-aware processes requires combination of different theories for formalizing the DB (e.g., *EUF*, *LIA*, *LRA*).
- Important question: is it possible (and, if so, under which conditions) to transfer UIs from two theories T₁, T₂ to the theory combination T₁ ∪ T₂?
- For disjoint-signature convex theories: **Yes**, under the same hypothesis for the transfer of *ordinary interpolation* the **equality interpolating condition** [YM05].
- Using Beth definability: devise a **combined UI algorithm** that employs the **component UI algorithms**.

Equality Interpolating Condition

Sufficient and, in some sense, necessary condition for transferring **qf** ordinary interpolants:

Equality Interpolating Condition

Sufficient and, in some sense, necessary condition for transferring **qf** ordinary interpolants:

Definition ([YM05])

A convex universal theory T is *equality interpolating* iff for every pair y_1, y_2 of variables and for every pair of *constraints* $\delta_1(\underline{x}, \underline{z}_1, y_1)$, $\delta_2(\underline{x}, \underline{z}_2, y_2)$ such that $T \vdash \delta_1(\underline{x}, \underline{z}_1, y_1) \land \delta_2(\underline{x}, \underline{z}_2, y_2) \rightarrow y_1 = y_2$, **there exists** a term $t(\underline{x})$ such that $T \vdash \delta_1(\underline{x}, \underline{z}_1, y_1) \land \delta_2(\underline{x}, \underline{z}_2, y_2) \rightarrow y_1 = t(\underline{x}) \land y_2 = t(\underline{x})$.

Equality Interpolating Condition

Sufficient and, in some sense, necessary condition for transferring **qf** ordinary interpolants:

Definition ([YM05])

A convex universal theory T is *equality interpolating* iff for every pair y_1, y_2 of variables and for every pair of *constraints* $\delta_1(\underline{x}, \underline{z}_1, y_1)$, $\delta_2(\underline{x}, \underline{z}_2, y_2)$ such that $T \vdash \delta_1(\underline{x}, \underline{z}_1, y_1) \land \delta_2(\underline{x}, \underline{z}_2, y_2) \rightarrow y_1 = y_2$, **there exists** a term $t(\underline{x})$ such that $T \vdash \delta_1(\underline{x}, \underline{z}_1, y_1) \land \delta_2(\underline{x}, \underline{z}_2, y_2) \rightarrow y_1 = t(\underline{x}) \land y_2 = t(\underline{x})$.

Examples of universal **quantifier-free interpolating** and **equality interpolating** theories:

- $\mathcal{EUF}(\Sigma)$, given a signature Σ ;
- recursive data theories;
- linear arithmetics.

Equality interpolating can be characterized using Beth definability.

Equality interpolating can be characterized using Beth definability.

Given a primitive formula $\exists \underline{z}\phi(\underline{x},\underline{z},y)$, we say that:

Equality interpolating can be characterized using Beth definability.

Given a primitive formula $\exists \underline{z} \phi(\underline{x}, \underline{z}, y)$, we say that:

• $\exists \underline{z} \phi(\underline{x}, \underline{z}, y)$ *implicitly defines* y in T iff the following formula is T-valid: $\forall y \forall y' (\exists \underline{z} \phi(\underline{x}, \underline{z}, y) \land \exists \underline{z} \phi(\underline{x}, \underline{z}, y') \rightarrow y = y')$;

Equality interpolating can be characterized using Beth definability.

Given a primitive formula $\exists \underline{z}\phi(\underline{x},\underline{z},y)$, we say that:

- $\exists \underline{z} \phi(\underline{x}, \underline{z}, y)$ *implicitly defines* y in T iff the following formula is T-valid: $\forall y \forall y' (\exists \underline{z} \phi(\underline{x}, \underline{z}, y) \land \exists \underline{z} \phi(\underline{x}, \underline{z}, y') \rightarrow y = y')$;
- $\exists \underline{z} \phi(\underline{x}, \underline{z}, y)$ explicitly defines y in T iff there is a term $t(\underline{x})$ such that the formula is T-valid: $\forall y \ (\exists \underline{z} \phi(\underline{x}, \underline{z}, y) \rightarrow y = t(\underline{x}));$

Equality interpolating can be characterized using Beth definability.

Given a primitive formula $\exists \underline{z}\phi(\underline{x},\underline{z},y)$, we say that:

- $\exists \underline{z} \phi(\underline{x}, \underline{z}, y)$ *implicitly defines* y in T iff the following formula is T-valid: $\forall y \forall y' (\exists \underline{z} \phi(\underline{x}, \underline{z}, y) \land \exists \underline{z} \phi(\underline{x}, \underline{z}, y') \rightarrow y = y')$;
- $\exists \underline{z} \phi(\underline{x}, \underline{z}, y)$ explicitly defines y in T iff there is a term $t(\underline{x})$ such that the formula is T-valid: $\forall y \ (\exists \underline{z} \phi(\underline{x}, \underline{z}, y) \rightarrow y = t(\underline{x}));$
- a theory T has the Beth definability property for primitive formulae iff whenever a primitive formula ∃<u>z</u> φ(<u>x</u>, <u>z</u>, y) implicitly defines the variable y then it also explicitly defines it.

Equality interpolating can be characterized using Beth definability.

Given a primitive formula $\exists \underline{z}\phi(\underline{x},\underline{z},y)$:

- $\exists \underline{z} \phi(\underline{x}, \underline{z}, y)$ *implicitly defines* y in T iff the following formula is T-valid: $\forall y \forall y' (\exists \underline{z} \phi(\underline{x}, \underline{z}, y) \land \exists \underline{z} \phi(\underline{x}, \underline{z}, y') \rightarrow y = y')$;
- $\exists \underline{z}\phi(\underline{x},\underline{z},y)$ explicitly defines y in T iff there is a term $t(\underline{x})$ such that the formula is T-valid: $\forall y \ (\exists \underline{z}\phi(\underline{x},\underline{z},y) \rightarrow y = t(\underline{x}));$
- T has the Beth definability property iff whenever ∃z φ(x, z, y) implicitly defines the variable y then it also explicitly defines it.

Theorem (Key Theorem [BGR14])

A convex theory T having quantifier-free interpolation is **equality interpolating iff** it has the **Beth definability property** for primitive formulae.

 Every Σ_i-theory T_i from now on is convex, stably infinite, equality interpolating, universal and admitting a model completion T_i^{*}.

- Every Σ_i-theory T_i from now on is convex, stably infinite, equality interpolating, universal and admitting a model completion T_i^{*}.
- Given a Σ_1 -theory T_1 and a Σ_2 -theory T_2 : compute a $T_1 \cup T_2$ -**UI** for $\exists \underline{e} \phi(\underline{x}, \underline{e})$ (Initial Formula).

- Every Σ_i-theory T_i from now on is convex, stably infinite, equality interpolating, universal and admitting a model completion T_i^{*}.
- Given a Σ_1 -theory T_1 and a Σ_2 -theory T_2 : compute a $T_1 \cup T_2$ -**UI** for $\exists \underline{e} \phi(\underline{x}, \underline{e})$ (Initial Formula).
- **Preprocessing**: the Initial Formula is transformed into $\exists \underline{z} (\texttt{ExplDef}(\underline{z}, \underline{x}) \land \exists \underline{e} (\psi_1(\underline{x}, \underline{z}, \underline{e}) \land \psi_2(\underline{x}, \underline{z}, \underline{e})))$, where

- Every Σ_i-theory T_i from now on is convex, stably infinite, equality interpolating, universal and admitting a model completion T_i^{*}.
- Given a Σ_1 -theory T_1 and a Σ_2 -theory T_2 : compute a $T_1 \cup T_2$ -**UI** for $\exists \underline{e} \phi(\underline{x}, \underline{e})$ (Initial Formula).
- **Preprocessing**: the Initial Formula is transformed into $\exists \underline{z} (\texttt{ExplDef}(\underline{z}, \underline{x}) \land \exists \underline{e} (\psi_1(\underline{x}, \underline{z}, \underline{e}) \land \psi_2(\underline{x}, \underline{z}, \underline{e}))), \text{ where }$

• ψ_i is a Σ_i -formula (i = 1, 2)

- Every Σ_i-theory T_i from now on is convex, stably infinite, equality interpolating, universal and admitting a model completion T_i^{*}.
- Given a Σ_1 -theory T_1 and a Σ_2 -theory T_2 : compute a $T_1 \cup T_2$ -**UI** for $\exists \underline{e} \phi(\underline{x}, \underline{e})$ (Initial Formula).
- **Preprocessing**: the Initial Formula is transformed into $\exists \underline{z} (\texttt{ExplDef}(\underline{z}, \underline{x}) \land \exists \underline{e} (\psi_1(\underline{x}, \underline{z}, \underline{e}) \land \psi_2(\underline{x}, \underline{z}, \underline{e}))), \text{ where }$

•
$$\psi_i$$
 is a Σ_i -formula $(i = 1, 2)$

• ExplDef $(\underline{z}, \underline{x}) \equiv \bigwedge_{i=1}^{m} z_i = t_i(z_1, \dots, z_{i-1}, \underline{x})$ (the term t_i is pure)

- Every Σ_i-theory T_i from now on is convex, stably infinite, equality interpolating, universal and admitting a model completion T_i^{*}.
- Given a Σ_1 -theory T_1 and a Σ_2 -theory T_2 : compute a $T_1 \cup T_2$ -**UI** for $\exists \underline{e} \phi(\underline{x}, \underline{e})$ (Initial Formula).
- **Preprocessing**: the Initial Formula is transformed into $\exists \underline{z} (\texttt{ExplDef}(\underline{z}, \underline{x}) \land \exists \underline{e} (\psi_1(\underline{x}, \underline{z}, \underline{e}) \land \psi_2(\underline{x}, \underline{z}, \underline{e}))), \text{ where }$
 - ψ_i is a Σ_i -formula (i = 1, 2)
 - ExplDef $(\underline{z}, \underline{x}) \equiv \bigwedge_{i=1}^{m} z_i = t_i(z_1, \dots, z_{i-1}, \underline{x})$ (the term t_i is pure)
 - \underline{x} are called *parameters*, \underline{z} *defined variables* and \underline{e} *existential variables*

- Every Σ_i-theory T_i from now on is convex, stably infinite, equality interpolating, universal and admitting a model completion T_i^{*}.
- Given a Σ_1 -theory T_1 and a Σ_2 -theory T_2 : compute a $T_1 \cup T_2$ -**UI** for $\exists \underline{e} \phi(\underline{x}, \underline{e})$ (Initial Formula).
- **Preprocessing**: the Initial Formula is transformed into $\exists \underline{z} (\texttt{ExplDef}(\underline{z}, \underline{x}) \land \exists \underline{e} (\psi_1(\underline{x}, \underline{z}, \underline{e}) \land \psi_2(\underline{x}, \underline{z}, \underline{e}))), \text{ where }$
 - ψ_i is a Σ_i -formula (i = 1, 2)
 - ExplDef $(\underline{z}, \underline{x}) \equiv \bigwedge_{i=1}^{m} z_i = t_i(z_1, \dots, z_{i-1}, \underline{x})$ (the term t_i is pure)
 - \underline{x} are called *parameters*, \underline{z} *defined variables* and \underline{e} *existential variables*
 - ψ_1, ψ_2 always contain the literals $e_i \neq e_j$ (for $i \neq j$).

- Every Σ_i-theory T_i from now on is convex, stably infinite, equality interpolating, universal and admitting a model completion T_i^{*}.
- Given a Σ_1 -theory T_1 and a Σ_2 -theory T_2 : compute a $T_1 \cup T_2$ -**UI** for $\exists \underline{e} \phi(\underline{x}, \underline{e})$ (Initial Formula).
- **Preprocessing**: the Initial Formula transformed into a 'purified' formula, where (acyclic) recursive *explicit definitions* are isolated.
- Intuitively, for every $e_i \in \underline{e}$:
 - either e_i is implicitly definable, so, via *Beth definability*, can be made explicitly defined;
 - or e_i is not implicitly definable.

- Every Σ_i-theory T_i from now on is convex, stably infinite, equality interpolating, universal and admitting a model completion T^{*}_i.
- Given a Σ_1 -theory T_1 and a Σ_2 -theory T_2 : compute a $T_1 \cup T_2$ -**UI** for $\exists \underline{e} \phi(\underline{x}, \underline{e})$ (Initial Formula).
- **Preprocessing**: the Initial Formula transformed into a 'purified' formula, where (acyclic) recursive *explicit definitions* are isolated.
- Intuitively, for every $e_i \in \underline{e}$:
 - either e_i is implicitly definable, so, via *Beth definability*, can be made explicitly defined;
 - or e_i is not implicitly definable.
- The **combined algorithm discovers** implicitly definable variables and eliminates them via **explicit definability** (via Beth definability): the obtained formula is called *terminal*.

Transfer of Uls

Given a *terminal* formula, the $T_1 \cup T_2$ -UI is modularly computed by:

- computing the T_1 -UI of the Σ_1 -pure part of the formula.
- computing the T_2 -UI of the Σ_2 -pure part of the formula.
- **unfolding** the (recursive) explicit definitions.

Transfer of Uls

Given a *terminal* formula, the $T_1 \cup T_2$ -UI is modularly computed by:

- computing the T_1 -UI of the Σ_1 -pure part of the formula.
- computing the T_2 -UI of the Σ_2 -pure part of the formula.
- **unfolding** the (recursive) explicit definitions.

Theorem ([CGG⁺22])

Let T_1, T_2 be FO theories with the aforementioned hypotheses. Then $T_1 \cup T_2$ admits a model completion too. Uls in $T_1 \cup T_2$ can be effectively **computed** using the translating procedure above an the previous proposition.

Implicit vs Explicit Definability

Evert Willem Beth

Hidden implicit definitions must

be **discovered**, because in theory combination they can propagate information from one theory to the other!

"Hidden implicit facts always need to be made explicit" [Again, not a citation, but a good synthesis]

• Equality interpolating is a necessary condition for UI transfer: minimal combinations with uninterpreted symbols.

- Equality interpolating is a necessary condition for UI transfer: minimal combinations with uninterpreted symbols.
- **Convexity** hypothesis cannot be eliminated. Counterexample:

- Equality interpolating is a necessary condition for UI transfer: minimal combinations with uninterpreted symbols.
- **Convexity** hypothesis cannot be eliminated. Counterexample:
 - ▶ $T_1 \cup T_2$, where

- Equality interpolating is a necessary condition for UI transfer: minimal combinations with uninterpreted symbols.
- **Convexity** hypothesis cannot be eliminated. Counterexample:
 - ▶ $T_1 \cup T_2$, where
 - * $T_1 := IDL$ (integer difference logic, which are integer numbers with successor and predecessor, 0 and the strict order <)

- Equality interpolating is a necessary condition for UI transfer: minimal combinations with uninterpreted symbols.
- **Convexity** hypothesis cannot be eliminated. Counterexample:
 - $T_1 \cup T_2$, where
 - * $T_1 := IDL$ (integer difference logic, which are integer numbers with successor and predecessor, 0 and the strict order <)
 - * $T_2:= \mathcal{EUF}(\Sigma_f)$, where Σ_f has only one unary fresh function symbol f (different from the symbols of T_1)

- Equality interpolating is a necessary condition for UI transfer: minimal combinations with uninterpreted symbols.
- **Convexity** hypothesis cannot be eliminated. Counterexample:
 - $T_1 \cup T_2$, where
 - * $T_1 := IDL$ (integer difference logic, which are integer numbers with successor and predecessor, 0 and the strict order <)
 - * $T_2:= \mathcal{EUF}(\Sigma_f)$, where Σ_f has only one unary fresh function symbol f (different from the symbols of T_1)
 - ▶ the formula $\exists e \ (0 < e \land e < x \land f(e) = 0)$ does not have a UI in $T_1 \cup T_2$.
How crucial are the hypotheses?

- Equality interpolating is a necessary condition for UI transfer: minimal combinations with uninterpreted symbols.
- **Convexity** hypothesis cannot be eliminated. Counterexample:
 - ▶ $T_1 \cup T_2$, where
 - * $T_1 := IDL$ (integer difference logic, which are integer numbers with successor and predecessor, 0 and the strict order <)
 - * $T_2:= \mathcal{EUF}(\Sigma_f)$, where Σ_f has only one unary fresh function symbol f (different from the symbols of T_1)
 - ▶ the formula $\exists e \ (0 < e \land e < x \land f(e) = 0)$ does **not** have a UI in $T_1 \cup T_2$.
- **Stable Infiniteness** is already crucial for combined satisfiability (cf. the **Nelson-Oppen method**!).

Outline

Overview

- 2 Motivation from Formal Verification
- 3 QE in Model Completions and Uniform Interpolation
- 4 Computing UIs in \mathcal{EUF}
- 5 Computing Uls in Theory Combinations

6 Conclusions

• Uniform Interpolants: important tool in formal verification

Compute *exact images*

- Compute exact images
- 'Weak form' of QE that is computationally tractable

- Compute exact images
- 'Weak form' of QE that is computationally tractable
- Uls have strict relationships with **model completions**: in these theories, Uls *eliminate quantifiers* in a proper sense.

- Compute exact images
- 'Weak form' of QE that is computationally tractable
- Uls have strict relationships with **model completions**: in these theories, Uls *eliminate quantifiers* in a proper sense.
- For significant theories (DB with keys), UIs can be **computed using** well-established techniques like the Superposition Calculus.

- Compute exact images
- 'Weak form' of QE that is computationally tractable
- Uls have strict relationships with **model completions**: in these theories, Uls *eliminate quantifiers* in a proper sense.
- For significant theories (DB with keys), UIs can be **computed using** well-established techniques like the Superposition Calculus.
- **Modular combined algorithms** for UI computation: applications to data-aware processes.

Several open directions:

• Using UIs for verification tasks beyond **safety** (e.g. *liveness*, *fairness*);

Several open directions:

- Using UIs for verification tasks beyond **safety** (e.g. *liveness*, *fairness*);
- Compute UIs using variants of Superposition Calculus in case of **sophisticated background theories**.

Several open directions:

- Using UIs for verification tasks beyond **safety** (e.g. *liveness*, *fairness*);
- Compute UIs using variants of Superposition Calculus in case of **sophisticated background theories**.
- UI transfer properties for proper non-disjoint signatures combinations.

Several open directions:

- Using UIs for verification tasks beyond **safety** (e.g. *liveness*, *fairness*);
- Compute UIs using variants of Superposition Calculus in case of **sophisticated background theories**.
- UI transfer properties for proper non-disjoint signatures combinations.
- Uniform Interpolants in SMT solvers

References I

R. Bruttomesso, S. Ghilardi, and S. Ranise. Quantifier-free interpolation in combinations of equality interpolating theories. *ACM Trans. Comput. Log.*, 15(1):5:1–5:34, 2014.

D. Calvanese, S. Ghilardi, A. Gianola, M. Montali, and A. Rivkin. SMT-based verification of data-aware processes: a model-theoretic approach. *Mathematical Structures in Computer Science*, 2020.

D. Calvanese, S. Ghilardi, A. Gianola, M. Montali, and A. Rivkin. Model completeness, uniform interpolants and superposition calculus. *Journal of Automated Reasoning*, 2021.

D. Calvanese, S. Ghilardi, A. Gianola, M. Montali, and A. Rivkin. Combination of uniform interpolants via Beth definability. *Journal of Automated Reasoning*, 2022.

Model Theory.

North-Holland Publishing Co., Amsterdam-London, third edition, 1990.

References II

W. Craig.

Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory.

Journal of Symbolic Logic, 22:269–285, 1957.

S. Gulwani and M. Musuvathi.

Cover algorithms and their combination.

In Proc. of ESOP, Held as Part of ETAPS, pages 193-207, 2008.

Ranjit Jhala and Rupak Majumdar.

Software model checking.

ACM Comput. Surv., 41(4):21:1-21:54, 2009.

L. Kovács and A. Voronkov.

Interpolation and symbol elimination.

In Proc. of CADE, pages 199-213, 2009.

References III

K. L. McMillan.

Interpolation and SAT-Based Model Checking.

In Proceedings of CAV 2003, volume 2725 of LNCS, pages 1-13. Springer, 2003.

K. L. McMillan.

Lazy Abstraction with Interpolants.

In Proceedings of CAV 2006, volume 4144 of LNCS, pages 123–136. Springer, 2006.

A. Robinson.

Introduction to model theory and to the metamathematics of algebra. Studies in logic and the foundations of mathematics. North-Holland, 1963.

G. Yorsh and M. Musuvathi.

A combination method for generating interpolants.

In Proc. of CADE-20, LNCS, pages 353-368. 2005.

Alessandro Gianola

Uls and Model Completions in Verification

Input formula: $f(e, y_1) = y_2 \land f(e, y_3) = y_4$

Input formula: $f(e, y_1) = y_2 \wedge f(e, y_3) = y_4$

Apply *Superposition Right* in root position, with:

- $l \equiv f(e, y_1)$,
- $r \equiv y_2$,
- $s \equiv f(e, y_3)$,
- $t \equiv y_4$

C and D are empty. We get $E(s, l) \equiv \{y_1 = y_3\}$

Input formula: $f(e, y_1) = y_2 \land f(e, y_3) = y_4$

Apply *Superposition Right* in root position, with:

- $l \equiv f(e, y_1)$,
- $r \equiv y_2$,
- $s \equiv f(e, y_3)$,
- $t \equiv y_4$

C and D are empty. We get $E(s,l)\equiv\{y_1=y_3\}$

So, we produce the clause $y_1 = y_3 || \{y_2 = y_4\}$, i.e., $y_1 = y_3 \rightarrow y_2 = y_4$.

•

Input formula: $f(e, y_1) = y_2 \land f(e, y_3) = y_4$

Apply *Superposition Right* in root position, with:

- $l \equiv f(e, y_1)$,
- $r \equiv y_2$,
- $s \equiv f(e, y_3)$,
- $t \equiv y_4$

C and D are empty. We get $E(s,l)\equiv\{y_1=y_3\}$

So, we produce the clause $y_1 = y_3 || \{y_2 = y_4\}$, i.e., $y_1 = y_3 \rightarrow y_2 = y_4$.

 $y_1 = y_3 \rightarrow y_2 = y_4$ is the **UI** of the **input formula**.

Combined Algorithm: an Example Let T_1 be $\mathcal{EUF}(\Sigma)$ and T_2 be linear real arithmetic.

Combined Algorithm: an Example

Let T_1 be $\mathcal{EUF}(\Sigma)$ and T_2 be linear real arithmetic.

Covers are computed in real arithmetic by quantifier elimination, whereas for $\mathcal{EUF}(\Sigma)$ one can apply the superposition-based algorithm from [CGG⁺21].

Combined Algorithm: an Example

Let T_1 be $\mathcal{EUF}(\Sigma)$ and T_2 be linear real arithmetic.

Covers are computed in real arithmetic by quantifier elimination, whereas for $\mathcal{EUF}(\Sigma)$ one can apply the superposition-based algorithm from [CGG⁺21].

Consider the formula:

$$\exists e_1 \cdots \exists e_4 \quad \begin{pmatrix} e_1 = f(x_1) \land e_2 = f(x_2) \land \\ \land f(e_3) = e_3 \land f(e_4) = x_1 \land \\ \land x_1 + e_1 \le e_3 \land e_3 \le x_2 + e_2 \land e_4 = x_2 + e_3 \end{pmatrix}$$

Combined Algorithm: an Example

Let T_1 be $\mathcal{EUF}(\Sigma)$ and T_2 be linear real arithmetic.

Covers are computed in real arithmetic by quantifier elimination, whereas for $\mathcal{EUF}(\Sigma)$ one can apply the superposition-based algorithm from [CGG⁺21].

Consider the formula:

$$\exists e_1 \cdots \exists e_4 \quad \begin{pmatrix} e_1 = f(x_1) \land e_2 = f(x_2) \land \\ \land f(e_3) = e_3 \land f(e_4) = x_1 \land \\ \land x_1 + e_1 \le e_3 \land e_3 \le x_2 + e_2 \land e_4 = x_2 + e_3 \end{pmatrix}$$

Applying the combined algorithm, we get:

$$\begin{aligned} [x_2 &= 0 \ \land \ f(x_1) = x_1 \ \land \ x_1 \leq 0 \ \land \ x_1 \leq f(0)] \lor \\ &\lor \ [x_1 + f(x_1) < x_2 + f(x_2) \ \land \ x_2 \neq 0] \lor \\ &\lor \left[x_2 \neq 0 \ \land \ x_1 + f(x_1) = x_2 + f(x_2) \ \land \ f(2x_2 + f(x_2)) = x_1 \land \\ &\land \ f(x_1 + f(x_1)) = x_1 + f(x_1) \end{aligned} \right]$$

Artifact-Centric Systems: process-centric paradigm + data (artifact = *lifecycle* + *information model*).

Artifact-Centric Systems: process-centric paradigm + data (artifact = lifecycle + information model). They can be formalized using three components:

Alessandro Gianola

Artifact-Centric Systems: process-centric paradigm + data (artifact = lifecycle + information model). They can be formalized using three components:

• a read-only database (DB);

Artifact-Centric Systems: process-centric paradigm + data (artifact = lifecycle + information model). They can be formalized using three components:

- a read-only database (DB);
- an artifact working memory (e.g., artifact variables + artifact relations);

Artifact-Centric Systems: process-centric paradigm + data (artifact = lifecycle + information model). They can be formalized using three components:

- a read-only database (DB);
- an artifact working memory (e.g., artifact variables + artifact relations);
- actions (also called services).

Artifact-Centric Systems: process-centric paradigm + data (artifact = lifecycle + information model). They can be formalized using three components:

- a read-only database (DB);
- an artifact working memory (e.g., artifact variables + artifact relations);
- actions (also called services).

Artifact-Centric Systems: process-centric paradigm + data (artifact = lifecycle + information model). They can be formalized using three components:

- a read-only database (DB);
- an artifact working memory (e.g., artifact variables + artifact relations);
- actions (also called services).

Artifact-Centric Systems \implies Array-based Systems \implies SMT-based tool Model Checker Modulo Theories (MCMT)

Alessandro Gianola

Uls and Model Completions in Verification

DB schemas: *read-only DB* of Artifact-Centric Systems, incorporating primary keys and foreign keys dependencies

DB schemas: *read-only DB* of Artifact-Centric Systems, incorporating primary keys and foreign keys dependencies

Definition

A DB schema is a pair (Σ, T) , where:

- Σ is a *DB signature*, that is, a finite multi-sorted signature with equality, unary functions, *n*-ary relations and constants;
- T is a DB theory, that is, a set of universal Σ -sentences.

DB schemas: *read-only DB* of Artifact-Centric Systems, incorporating primary keys and foreign keys dependencies

Definition

A DB schema is a pair (Σ, T) , where:

- Σ is a *DB signature*, that is, a finite multi-sorted signature with equality, unary functions, *n*-ary relations and constants;
- T is a DB theory, that is, a set of universal Σ -sentences.

In a *basic DB schema*, T is empty. $G(\Sigma)$: characteristic graph capturing the dependencies induced by functions over sorts.

DB schemas: *read-only DB* of Artifact-Centric Systems, incorporating primary keys and foreign keys dependencies

Definition

A DB schema is a pair (Σ, T) , where:

- Σ is a *DB signature*, that is, a finite multi-sorted signature with equality, unary functions, *n*-ary relations and constants;
- T is a DB theory, that is, a set of universal Σ-sentences.

In a *basic DB schema*, T is empty. $G(\Sigma)$: characteristic graph capturing the dependencies induced by functions over sorts. **Example:**

Array-based Artifact-Centric Systems: a simplified version

A SAS (Simple Artifact Systems) is a tuple

- $\mathcal{S} = \langle \Sigma, T, \underline{x}, \iota(\underline{x}), \tau(\underline{x}, \underline{x}') \rangle$, where:
 - (Σ, T) is a DB schema;
 - <u>x</u> are individual FO variables representing the current state;
 - ι is a Σ -formula representing the initialization;
 - $\tau(\underline{x}, \underline{x}')$ is a Σ -formula representing the transitions from the current state \underline{x} to the new state \underline{x}' .
Array-based Artifact-Centric Systems: a simplified version

A SAS (Simple Artifact Systems) is a tuple

- $\mathcal{S} \;=\; \langle \Sigma, T, \underline{x}, \iota(\underline{x}), \tau(\underline{x}, \underline{x}')
 angle$, where:
 - (Σ, T) is a DB schema;
 - \underline{x} are individual FO variables representing the current state;
 - ι is a Σ -formula representing the initialization;
 - $\tau(\underline{x}, \underline{x}')$ is a Σ -formula representing the transitions from the current state \underline{x} to the new state \underline{x}' .

Individual variables \underline{x}

Artifact Variables (Working Memory)

Array-based Artifact-Centric Systems: a simplified version

A SAS (Simple Artifact Systems) is a tuple

- $\mathcal{S} = \langle \Sigma, T, \underline{x}, \iota(\underline{x}), \tau(\underline{x}, \underline{x}') \rangle$, where:
 - (Σ, T) is a DB schema;
 - <u>x</u> are individual FO variables representing the current state;
 - ι is a Σ -formula representing the initialization;
 - $\tau(\underline{x}, \underline{x}')$ is a Σ -formula representing the transitions from the current state \underline{x} to the new state \underline{x}' .

Artifact Variables (Working Memory)

Individual variables change their value over the time, according to the *transitions* formula!

A simple example

Job Hiring Process:

$$\iota := (\mathsf{Applicant} = undef \land \mathsf{JobPos} = undef)$$

$$\tau := \exists \mathsf{U}\mathsf{serID}, \mathsf{JobID} \left(\begin{matrix} \mathsf{U}\mathsf{serID} \neq undef \land \mathsf{JobID} \neq undef \land \mathsf{Applicant} = undef \land \\ \mathsf{JobPos} = undef \land \mathsf{Applicant}' := \mathsf{U}\mathsf{serID} \land \mathsf{JobPos}' := \mathsf{JobID} \end{matrix} \right)$$

A simple example

Job Hiring Process:

$$\iota := (\mathsf{Applicant} = undef \land \mathsf{JobPos} = undef)$$

$$\tau := \exists \mathsf{U}\mathsf{serID}, \mathsf{JobID} \left(\begin{matrix} \mathsf{U}\mathsf{serID} \neq undef \land \mathsf{JobID} \neq undef \land \mathsf{Applicant} = undef \land \\ \mathsf{JobPos} = undef \land \mathsf{Applicant}' := \mathsf{U}\mathsf{serID} \land \mathsf{JobPos}' := \mathsf{JobID} \end{matrix} \right)$$

A simple example

Job Hiring Process:

$$\iota := (\mathsf{Applicant} = undef \land \mathsf{JobPos} = undef)$$

$$\tau := \exists \mathsf{U}\mathsf{serID}, \mathsf{JobID} \left(\begin{matrix} \mathsf{U}\mathsf{serID} \neq undef \land \mathsf{JobID} \neq undef \land \mathsf{Applicant} = undef \land \\ \mathsf{JobPos} = undef \land \mathsf{Applicant}' := \mathsf{U}\mathsf{serID} \land \mathsf{JobPos}' := \mathsf{JobID} \end{matrix} \right)$$

A *safety* formula for S: *generic* quantifier-free formula $v(\underline{x}) \implies$ *undesired states* of S.

A *safety* formula for S: *generic* quantifier-free formula $v(\underline{x}) \implies$ *undesired states* of S.

S is safe wrt v iff in no model \mathcal{M} of (Σ, T) , for no $k \ge 0$ and for no assignment in \mathcal{M} to $\underline{x}^0, \ldots, \underline{x}^k$ (1) is true (\underline{x}^i are renamed copies of \underline{x}):

$$\iota(\underline{x}^{0}) \wedge \tau(\underline{x}^{0}, \underline{x}^{1}) \wedge \dots \wedge \tau(\underline{x}^{k-1}, \underline{x}^{k}) \wedge \upsilon(\underline{x}^{k})$$
(1)

A *safety* formula for S: *generic* quantifier-free formula $v(\underline{x}) \implies$ *undesired states* of S.

S is safe wrt v iff in no model \mathcal{M} of (Σ, T) , for no $k \ge 0$ and for no assignment in \mathcal{M} to $\underline{x}^0, \ldots, \underline{x}^k$ (1) is true (\underline{x}^i are renamed copies of \underline{x}):

$$\iota(\underline{x}^{0}) \wedge \tau(\underline{x}^{0}, \underline{x}^{1}) \wedge \dots \wedge \tau(\underline{x}^{k-1}, \underline{x}^{k}) \wedge \upsilon(\underline{x}^{k})$$
(1)

Safety problem for S: given v, decide if S is safe wrt v.

A *safety* formula for S: *generic* quantifier-free formula $v(\underline{x}) \implies$ *undesired states* of S.

S is safe wrt v iff in no model \mathcal{M} of (Σ, T) , for no $k \ge 0$ and for no assignment in \mathcal{M} to $\underline{x}^0, \ldots, \underline{x}^k$ (1) is true (\underline{x}^i are renamed copies of \underline{x}):

$$\iota(\underline{x}^{0}) \wedge \tau(\underline{x}^{0}, \underline{x}^{1}) \wedge \dots \wedge \tau(\underline{x}^{k-1}, \underline{x}^{k}) \wedge \upsilon(\underline{x}^{k})$$
(1)

Safety problem for S: given v, decide if S is safe wrt v.

Theorem (Soundness and Completeness)

Backward search is effective, correct and complete (the last one w.r.t. detecting unsafety) for the safety problems for SASs. If $G(\Sigma)$ is acyclic, backward search always terminates and it is a full decision procedure.